BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 29287081)

  • 1. Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks.
    Devalle F; Roxin A; Montbrió E
    PLoS Comput Biol; 2017 Dec; 13(12):e1005881. PubMed ID: 29287081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking.
    Baroni F; Burkitt AN; Grayden DB
    PLoS Comput Biol; 2014 May; 10(5):e1003574. PubMed ID: 24784237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory network of spiking neurons may express a sharp peak of synchrony at low frequency band.
    Meyrand P; Cattaert D; Ostaszewski H; Bem T
    Biol Cybern; 2009 Dec; 101(5-6):325-38. PubMed ID: 19862549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory synchrony as a mechanism for attentional gain modulation.
    Tiesinga PH; Fellous JM; Salinas E; José JV; Sejnowski TJ
    J Physiol Paris; 2004; 98(4-6):296-314. PubMed ID: 16274973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.
    Kazantsev VB; Asatryan SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031913. PubMed ID: 22060409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid temporal modulation of synchrony by competition in cortical interneuron networks.
    Tiesinga PH; Sejnowski TJ
    Neural Comput; 2004 Feb; 16(2):251-75. PubMed ID: 15006096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the stationary state of a network of inhibitory spiking neurons.
    Kinzel W
    J Comput Neurosci; 2008 Feb; 24(1):105-12. PubMed ID: 17629780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous rate-synchrony codes in populations of spiking neurons.
    Masuda N
    Neural Comput; 2006 Jan; 18(1):45-59. PubMed ID: 16354380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrony with shunting inhibition in a feedforward inhibitory network.
    Talathi SS; Hwang DU; Carney PR; Ditto WL
    J Comput Neurosci; 2010 Apr; 28(2):305-21. PubMed ID: 20135213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses.
    Guo D; Wang Q; Perc M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061905. PubMed ID: 23005125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does layer 4 in the barrel cortex function as a balanced circuit when responding to whisker movements?
    Argaman T; Golomb D
    Neuroscience; 2018 Jan; 368():29-45. PubMed ID: 28774782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of firing patterns in fast-spiking cortical interneurons.
    Golomb D; Donner K; Shacham L; Shlosberg D; Amitai Y; Hansel D
    PLoS Comput Biol; 2007 Aug; 3(8):e156. PubMed ID: 17696606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of gap junctions on the firing patterns and synchrony for different external inputs in the striatal fast-spiking neuron network.
    Zhang M; Zhao Z; He P; Wang J
    Biomed Mater Eng; 2014; 24(6):2635-44. PubMed ID: 25226967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding synchronized oscillations within the brain: phase-delayed inhibition provides a robust mechanism for creating a sharp synchrony filter.
    Patel M; Joshi B
    J Theor Biol; 2013 Oct; 334():13-25. PubMed ID: 23747525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity.
    Talathi SS; Hwang DU; Ditto WL
    J Comput Neurosci; 2008 Oct; 25(2):262-81. PubMed ID: 18297384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission.
    Thomas EA; Bornstein JC
    Neuroscience; 2003; 120(2):333-51. PubMed ID: 12890506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.
    Sailamul P; Jang J; Paik SB
    J Comput Neurosci; 2017 Dec; 43(3):189-202. PubMed ID: 28895002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant synchronization in heterogeneous networks of inhibitory neurons.
    Maex R; De Schutter E
    J Neurosci; 2003 Nov; 23(33):10503-14. PubMed ID: 14627634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.