These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 29287366)
1. Antioxidant-spotting in micelles and emulsions. Aliaga C; López de Arbina A; Pastenes C; Rezende MC Food Chem; 2018 Apr; 245():240-245. PubMed ID: 29287366 [TBL] [Abstract][Full Text] [Related]
2. The effect of micellization on the EPR spectra and reactivity of 2,2,4,4-tetramethylpiperidinoxyl (TEMPO) radicals. Aliaga C; Rezende MC; Mena G Magn Reson Chem; 2016 Nov; 54(11):870-873. PubMed ID: 27412810 [TBL] [Abstract][Full Text] [Related]
3. The location of amphiphobic antioxidants in micellar systems: The diving-swan analogy. Lopez de Arbina A; Losada-Barreiro S; Rezende MC; Vidal M; Aliaga C Food Chem; 2019 May; 279():288-293. PubMed ID: 30611492 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of the antioxidant efficiency of gallic acid derivatives in intact fish oil-in-water emulsions through optimization of their interfacial concentrations. Freiría-Gándara J; Losada-Barreiro S; Paiva-Martins F; Bravo-Díaz C Food Funct; 2018 Aug; 9(8):4429-4442. PubMed ID: 30070303 [TBL] [Abstract][Full Text] [Related]
5. Physical evidence that the variations in the efficiency of homologous series of antioxidants in emulsions are a result of differences in their distribution. Costa M; Losada-Barreiro S; Paiva-Martins F; Bravo-Díaz C J Sci Food Agric; 2017 Jan; 97(2):564-571. PubMed ID: 27097916 [TBL] [Abstract][Full Text] [Related]
6. A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the "cut-off" effect. Costa M; Losada-Barreiro S; Paiva-Martins F; Bravo-Díaz C; Romsted LS Food Chem; 2015 May; 175():233-42. PubMed ID: 25577075 [TBL] [Abstract][Full Text] [Related]
7. Control of antioxidant efficiency of chlorogenates in emulsions: modulation of antioxidant interfacial concentrations. Meireles M; Losada-Barreiro S; Costa M; Paiva-Martins F; Bravo-Díaz C; Monteiro LS J Sci Food Agric; 2019 Jun; 99(8):3917-3925. PubMed ID: 30697750 [TBL] [Abstract][Full Text] [Related]
8. Interfacial Concentrations of Hydroxytyrosol and Its Lipophilic Esters in Intact Olive Oil-in-Water Emulsions: Effects of Antioxidant Hydrophobicity, Surfactant Concentration, and the Oil-to-Water Ratio on the Oxidative Stability of the Emulsions. Almeida J; Losada-Barreiro S; Costa M; Paiva-Martins F; Bravo-Díaz C; Romsted LS J Agric Food Chem; 2016 Jun; 64(25):5274-83. PubMed ID: 27157893 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen-transfer reactions from phenols to TEMPO prefluorescent probes in micellar systems. Aliaga C; Juárez-Ruiz JM; Scaiano JC; Aspée A Org Lett; 2008 Jun; 10(11):2147-50. PubMed ID: 18465870 [TBL] [Abstract][Full Text] [Related]
10. "Cut-off" effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media. Aliaga C; López de Arbina A; Rezende MC Food Chem; 2016 Sep; 206():119-23. PubMed ID: 27041306 [TBL] [Abstract][Full Text] [Related]
11. Effect of lipophilization on the distribution and reactivity of ingredients in emulsions. Leong WF; Berton-Carabin CC; Elias RJ; Lecomte J; Villeneuve P; Zhao Y; Coupland JN J Colloid Interface Sci; 2015 Dec; 459():36-43. PubMed ID: 26263493 [TBL] [Abstract][Full Text] [Related]
12. Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions. Lopez de Arbina A; Rezende MC; Aliaga C Food Chem; 2017 Jun; 224():342-346. PubMed ID: 28159277 [TBL] [Abstract][Full Text] [Related]
13. An investigation of the versatile antioxidant mechanisms of action of rosmarinate alkyl esters in oil-in-water emulsions. Panya A; Laguerre M; Bayrasy C; Lecomte J; Villeneuve P; McClements DJ; Decker EA J Agric Food Chem; 2012 Mar; 60(10):2692-700. PubMed ID: 22324394 [TBL] [Abstract][Full Text] [Related]
14. Enhanced physical and oxidative stabilities of soy protein-based emulsions by incorporation of a water-soluble stevioside-resveratrol complex. Wan ZL; Wang JM; Wang LY; Yang XQ; Yuan Y J Agric Food Chem; 2013 May; 61(18):4433-40. PubMed ID: 23590665 [TBL] [Abstract][Full Text] [Related]
15. Aromatic and aliphatic mono- and bis-nitroxides: a study on their radical scavenging abilities. Damiani E; Castagna R; Astolfi P; Greci L Free Radic Res; 2005 Mar; 39(3):325-36. PubMed ID: 15788237 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of reactive nitroxides using invasomes to allow prolonged electron paramagnetic resonance measurements. Haag SF; Taskoparan B; Bittl R; Teutloff C; Wenzel R; Fahr A; Chen M; Lademann J; Schäfer-Korting M; Meinke MC Skin Pharmacol Physiol; 2011; 24(6):312-21. PubMed ID: 21822032 [TBL] [Abstract][Full Text] [Related]
17. Inclusion complexes of cyclodextrins with nitroxide-based spin probes in aqueous solutions. Ionita G; Caragheorgheopol A; Caldararu H; Jones L; Chechik V Org Biomol Chem; 2009 Feb; 7(3):598-602. PubMed ID: 19156327 [TBL] [Abstract][Full Text] [Related]
18. Localization and reactivity of a hydrophobic solute in lecithin and caseinate stabilized solid lipid nanoparticles and nanoemulsions. Yucel U; Elias RJ; Coupland JN J Colloid Interface Sci; 2013 Mar; 394():20-5. PubMed ID: 23352869 [TBL] [Abstract][Full Text] [Related]
19. Maxima in antioxidant distributions and efficiencies with increasing hydrophobicity of gallic acid and its alkyl esters. The pseudophase model interpretation of the "cutoff effect". Losada Barreiro S; Bravo-Díaz C; Paiva-Martins F; Romsted LS J Agric Food Chem; 2013 Jul; 61(26):6533-43. PubMed ID: 23701266 [TBL] [Abstract][Full Text] [Related]
20. Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides. Dikalov SI; Dikalova AE; Morozov DA; Kirilyuk IA Free Radic Res; 2018 Mar; 52(3):339-350. PubMed ID: 29098905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]