These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 29287858)

  • 21. A facile 3D bio-fabrication of customized tubular scaffolds using solvent-based extrusion printing for tissue-engineered tracheal grafts.
    Kandi R; Sachdeva K; Choudhury SD; Pandey PM; Mohanty S
    J Biomed Mater Res A; 2023 Feb; 111(2):278-293. PubMed ID: 36210769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rational tissue engineering strategy based on three-dimensional (3D) printing for extensive circumferential tracheal reconstruction.
    Park JH; Park JY; Nam IC; Ahn M; Lee JY; Choi SH; Kim SW; Cho DW
    Biomaterials; 2018 Dec; 185():276-283. PubMed ID: 30261427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional-Printed Bioengineered Tracheal Grafts: Preclinical Results and Potential for Human Use.
    Rehmani SS; Al-Ayoubi AM; Ayub A; Barsky M; Lewis E; Flores R; Lebovics R; Bhora FY
    Ann Thorac Surg; 2017 Sep; 104(3):998-1004. PubMed ID: 28610885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospun scaffolds limit the regenerative potential of the airway epithelium.
    Schwartz CM; Stack J; Hill CL; Lallier SW; Chiang T; Johnson J; Reynolds SD
    Laryngoscope Investig Otolaryngol; 2019 Aug; 4(4):446-454. PubMed ID: 31453356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-segmental tracheal reconstruction in rabbits with pedicled Tissue-engineered trachea based on a 3D-printed scaffold.
    Gao B; Jing H; Gao M; Wang S; Fu W; Zhang X; He X; Zheng J
    Acta Biomater; 2019 Oct; 97():177-186. PubMed ID: 31352107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel tissue-engineered trachea with a mechanical behavior similar to native trachea.
    Park JH; Hong JM; Ju YM; Jung JW; Kang HW; Lee SJ; Yoo JJ; Kim SW; Kim SH; Cho DW
    Biomaterials; 2015 Sep; 62():106-15. PubMed ID: 26041482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PLGA-PTMC-Cultured Bone Mesenchymal Stem Cell Scaffold Enhances Cartilage Regeneration in Tissue-Engineered Tracheal Transplantation.
    Yan B; Zhang Z; Wang X; Ni Y; Liu Y; Liu T; Wang W; Xing H; Sun Y; Wang J; Li XF
    Artif Organs; 2017 May; 41(5):461-469. PubMed ID: 27925229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomimetic Trachea Engineering via a Modular Ring Strategy Based on Bone-Marrow Stem Cells and Atelocollagen for Use in Extensive Tracheal Reconstruction.
    Xu Y; Dai J; Zhu X; Cao R; Song N; Liu M; Liu X; Zhu J; Pan F; Qin L; Jiang G; Wang H; Yang Y
    Adv Mater; 2022 Feb; 34(6):e2106755. PubMed ID: 34741771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endoscopic management of tissue-engineered tracheal graft stenosis in an ovine model.
    Pepper VK; Onwuka EA; Best CA; King N; Heuer E; Johnson J; Breuer CK; Grischkan JM; Chiang T
    Laryngoscope; 2017 Oct; 127(10):2219-2224. PubMed ID: 28349659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transplantation of a 3D-printed tracheal graft combined with iPS cell-derived MSCs and chondrocytes.
    Kim IG; Park SA; Lee SH; Choi JS; Cho H; Lee SJ; Kwon YW; Kwon SK
    Sci Rep; 2020 Mar; 10(1):4326. PubMed ID: 32152475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of a Prevascularized Bone Graft for Large Defects in the Ovine Tibia.
    Yang YP; Gadomski BC; Bruyas A; Easley J; Labus KM; Nelson B; Palmer RH; Stewart H; McGilvray K; Puttlitz CM; Regan D; Stahl A; Lui E; Li J; Moeinzadeh S; Kim S; Maloney W; Gardner MJ
    Tissue Eng Part A; 2021 Dec; 27(23-24):1458-1469. PubMed ID: 33858216
    [No Abstract]   [Full Text] [Related]  

  • 33. The biological properties of the decellularized tracheal scaffolds and 3D printing biomimetic materials: A comparative study.
    Pan S; Lu Y; Li J; Shi H
    J Biomed Mater Res A; 2022 May; 110(5):1062-1076. PubMed ID: 35064753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the biological properties between 3D-printed and decellularized tracheal grafts.
    Wang Y; Li J; Qian J; Sun Y; Xu J; Sun J
    Bioprocess Biosyst Eng; 2023 Jul; 46(7):957-967. PubMed ID: 37171579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical properties of the ex vivo porcine trachea: A benchmark for three-dimensional bioprinted airway replacements.
    Kaye R; Cao A; Goldstein T; Grande DA; Zeltsman D; Smith LP
    Am J Otolaryngol; 2022; 43(1):103217. PubMed ID: 34537505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: an ovine femoral condyle defect study.
    Tayton E; Purcell M; Smith JO; Lanham S; Howdle SM; Shakesheff KM; Goodship A; Blunn G; Fowler D; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2015 Apr; 103(4):1346-56. PubMed ID: 25044983
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES].
    Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold.
    Liu L; Wu W; Tuo X; Geng W; Zhao J; Wei J; Yan X; Yang W; Li L; Chen F
    Artif Organs; 2010 May; 34(5):426-33. PubMed ID: 20633157
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patterned, tubular scaffolds mimic longitudinal and radial mechanics of the neonatal trachea.
    Mansfield EG; Greene VK; Auguste DT
    Acta Biomater; 2016 Mar; 33():176-82. PubMed ID: 26821338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exosomes from 3T3-J2 promote expansion of tracheal basal cells to facilitate rapid epithelization of 3D-printed double-layer tissue engineered trachea.
    Zhang X; Jing H; Luo K; Shi B; Luo Q; Zhu Z; He X; Zheng J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112371. PubMed ID: 34579890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.