BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29288027)

  • 1. Activity of the pterophyllins 2 and 4 against postharvest fruit pathogenic fungi. Comparison with a synthetic analog and related intermediates.
    Pergomet JL; Di Liberto MG; Derita MG; Bracca ABJ; Kaufman TS
    Fitoterapia; 2018 Mar; 125():98-105. PubMed ID: 29288027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of aromatic methoxime derivatives against five postharvest phytopathogenic fungi of fruits. Main structure-activity relationships.
    Cortés I; di Liberto MG; Kaufman TS; Derita MG; Bracca ABJ
    Food Chem; 2020 Aug; 321():126701. PubMed ID: 32283502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection.
    Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S
    Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits.
    Amiri A; Holb IJ; Schnabel G
    Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Evaluation of the effects of biological preparations on phytopathogenic fungi Didymella applanata and Botrytis cinerea].
    Shpatova TV; Shternshis MV; Beliaev AA
    Prikl Biokhim Mikrobiol; 2003; 39(1):43-6. PubMed ID: 12625041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal Activity of Some Constituents of Origanum vulgare L. Essential Oil Against Postharvest Disease of Peach Fruit.
    Elshafie HS; Mancini E; Sakr S; De Martino L; Mattia CA; De Feo V; Camele I
    J Med Food; 2015 Aug; 18(8):929-34. PubMed ID: 25599273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using essential oils to control diseases in strawberries and peaches.
    Fontana DC; Neto DD; Pretto MM; Mariotto AB; Caron BO; Kulczynski SM; Schmidt D
    Int J Food Microbiol; 2021 Jan; 338():108980. PubMed ID: 33243629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, synthesis and antifungal activity evaluation of coumarin-3-carboxamide derivatives.
    Yu X; Teng P; Zhang YL; Xu ZJ; Zhang MZ; Zhang WH
    Fitoterapia; 2018 Jun; 127():387-395. PubMed ID: 29631016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essential oils to control Botrytis cinerea in vitro and in vivo on plum fruits.
    Aminifard MH; Mohammadi S
    J Sci Food Agric; 2013 Jan; 93(2):348-53. PubMed ID: 22740387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal activity of β-carbolines on Penicillium digitatum and Botrytis cinerea.
    Olmedo GM; Cerioni L; González MM; Cabrerizo FM; Rapisarda VA; Volentini SI
    Food Microbiol; 2017 Apr; 62():9-14. PubMed ID: 27889171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential oil composition and antifungal activity of Melissa officinalis originating from north-Est Morocco, against postharvest phytopathogenic fungi in apples.
    El Ouadi Y; Manssouri M; Bouyanzer A; Majidi L; Bendaif H; Elmsellem H; Shariati MA; Melhaoui A; Hammouti B
    Microb Pathog; 2017 Jun; 107():321-326. PubMed ID: 28389346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Monilinia spp. Populations on Stone Fruit in South Italy.
    Abate D; Pastore C; Gerin D; De Miccolis Angelini RM; Rotolo C; Pollastro S; Faretra F
    Plant Dis; 2018 Sep; 102(9):1708-1717. PubMed ID: 30125154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological effects and mode of action of ZnO nanoparticles against postharvest fungal contaminants.
    Sardella D; Gatt R; Valdramidis VP
    Food Res Int; 2017 Nov; 101():274-279. PubMed ID: 28941694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural products as sources of new fungicides (V): Design and synthesis of acetophenone derivatives against phytopathogenic fungi in vitro and in vivo.
    Dan WJ; Tuong TM; Wang DC; Li D; Zhang AL; Gao JM
    Bioorg Med Chem Lett; 2018 Sep; 28(17):2861-2864. PubMed ID: 30037493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Antimicrobial Activity of Calycanthaceous Alkaloid Analogues.
    Zheng S; Li L; Wang Y; Zhu R; Bai H; Zhang J
    Nat Prod Commun; 2016 Oct; 11(10):1429-1432. PubMed ID: 30549592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of commercial essential oil samples on the growth of postharvest pathogen Monilinia fructicola (G. Winter) Honey.
    Lazar-Baker EE; Hetherington SD; Ku VV; Newman SM
    Lett Appl Microbiol; 2011 Mar; 52(3):227-32. PubMed ID: 21294758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay.
    Song J; Hildebrand PD; Fan L; Forney CF; Renderos WE; Campbell-Palmer L; Doucette C
    J Food Sci; 2007 May; 72(4):M108-12. PubMed ID: 17995777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zanthosimuline and Related Pyranoquinolines as Antifungal Agents for Postharvest Fruit Disease Control.
    Di Liberto MG; Caldo AJ; Quiroga AD; Riveira MJ; Derita MG
    ACS Omega; 2020 Apr; 5(13):7481-7487. PubMed ID: 32280891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal effect of gaseous nitric oxide on mycelium growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Monilinia fructicola and Penicillium italicum.
    Lazar EE; Wills RB; Ho BT; Harris AM; Spohr LJ
    Lett Appl Microbiol; 2008 Jun; 46(6):688-92. PubMed ID: 18444976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of natural antifungal agents for postharvest diseases of blackberry fruits.
    Liu H; Zhao H; Lyu L; Huang Z; Fan S; Wu W; Li W
    J Sci Food Agric; 2019 May; 99(7):3343-3349. PubMed ID: 30578531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.