These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29288093)

  • 1. Notorious but not understood: How liquid-air interfacial stress triggers protein aggregation.
    Koepf E; Eisele S; Schroeder R; Brezesinski G; Friess W
    Int J Pharm; 2018 Feb; 537(1-2):202-212. PubMed ID: 29288093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface.
    Koepf E; Schroeder R; Brezesinski G; Friess W
    Eur J Pharm Biopharm; 2017 Oct; 119():396-407. PubMed ID: 28743595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface.
    Koepf E; Richert M; Braunschweig B; Schroeder R; Brezesinski G; Friess W
    Int J Pharm; 2018 Apr; 541(1-2):234-245. PubMed ID: 29486287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The missing piece in the puzzle: Prediction of aggregation via the protein-protein interaction parameter A
    Koepf E; Schroeder R; Brezesinski G; Friess W
    Eur J Pharm Biopharm; 2018 Jul; 128():200-209. PubMed ID: 29723667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the Agitation-Induced Aggregation of Monoclonal Antibodies Using Surface Tensiometry.
    Shieh IC; Patel AR
    Mol Pharm; 2015 Sep; 12(9):3184-93. PubMed ID: 26198590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of Monoclonal Antibody Aggregation at the Air-Liquid Interface under Flow by ATR-FTIR Spectroscopic Imaging.
    van Haaren C; Byrne B; Kazarian SG
    Langmuir; 2024 Mar; 40(11):5858-5868. PubMed ID: 38445553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time imaging of monoclonal antibody film reconstitution after mechanical stress at the air-liquid interface by Brewster angle microscopy.
    Žuntar T; Ličen M; Kuzman D; Osterman N
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112757. PubMed ID: 36030727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and orientation changes of omega- and gamma-gliadins at the air-water interface: a PM-IRRAS spectroscopy and Brewster angle microscopy study.
    Banc A; Desbat B; Renard D; Popineau Y; Mangavel C; Navailles L
    Langmuir; 2007 Dec; 23(26):13066-75. PubMed ID: 18031067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological changes in adsorbed protein films at the air-water interface subjected to large area variations, as observed by brewster angle microscopy.
    Xu R; Dickinson E; Murray BS
    Langmuir; 2007 Apr; 23(9):5005-13. PubMed ID: 17385900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of agitation-induced aggregation of an IgG-antibody by hydroxypropyl-beta-cyclodextrin.
    Serno T; Carpenter JF; Randolph TW; Winter G
    J Pharm Sci; 2010 Mar; 99(3):1193-206. PubMed ID: 19774651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between mechanical behavior of protein films at the air/water interface and intrinsic stability of protein molecules.
    Martin AH; Cohen Stuart MA; Bos MA; van Vliet T
    Langmuir; 2005 Apr; 21(9):4083-9. PubMed ID: 15835978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations.
    Schüle S; Friess W; Bechtold-Peters K; Garidel P
    Eur J Pharm Biopharm; 2007 Jan; 65(1):1-9. PubMed ID: 17034996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Effect of Cavitation and Agitation on Protein Aggregation.
    Torisu T; Maruno T; Hamaji Y; Ohkubo T; Uchiyama S
    J Pharm Sci; 2017 Feb; 106(2):521-529. PubMed ID: 27887723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of antibody aggregation: role of buried, unpaired cysteines in particle formation.
    Brych SR; Gokarn YR; Hultgen H; Stevenson RJ; Rajan R; Matsumura M
    J Pharm Sci; 2010 Feb; 99(2):764-81. PubMed ID: 19691118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein aggregation and particle formation in prefilled glass syringes.
    Gerhardt A; Mcgraw NR; Schwartz DK; Bee JS; Carpenter JF; Randolph TW
    J Pharm Sci; 2014 Jun; 103(6):1601-12. PubMed ID: 24729310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Method To Measure Protein Unfolding at an Air-Liquid Interface.
    Leiske DL; Shieh IC; Tse ML
    Langmuir; 2016 Oct; 32(39):9930-9937. PubMed ID: 27643824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Impact of Combined Hydrodynamic Shear and Interfacial Dilatational Stress, on Interface-Mediated Particle Formation for Monoclonal Antibody Formulations.
    Griffin VP; Pace S; Ogunyankin MO; Holstein M; Hung J; Dhar P
    J Pharm Sci; 2024 Apr; ():. PubMed ID: 38615816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared reflection-absorption spectroscopy and polarization-modulated infrared reflection-absorption spectroscopy studies of the aequorin langmuir monolayer.
    Wang C; Micic M; Ensor M; Daunert S; Leblanc RM
    J Phys Chem B; 2008 Apr; 112(13):4146-51. PubMed ID: 18324807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.