These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29288278)

  • 1. Two-photon fabrication of hydrogel microstructures for excitation and immobilization of cells.
    Hasselmann NF; Hackmann MJ; Horn W
    Biomed Microdevices; 2017 Dec; 20(1):8. PubMed ID: 29288278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel single-step fabrication technique to create heterogeneous poly(ethylene glycol) hydrogel microstructures containing multiple phenotypes of mammalian cells.
    Zguris JC; Itle LJ; Koh WG; Pishko MV
    Langmuir; 2005 Apr; 21(9):4168-74. PubMed ID: 15835990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.
    Kufelt O; El-Tamer A; Sehring C; Meißner M; Schlie-Wolter S; Chichkov BN
    Acta Biomater; 2015 May; 18():186-95. PubMed ID: 25749294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytocompatible Fabrication of Yeast Cells/Fabrics Composite Sheet for Bioethanol Production.
    He B; Zhu X; Zhao C; Wang G; Ma Y; Yang W
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800212. PubMed ID: 29947153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization.
    Käpylä E; Sedlačík T; Aydogan DB; Viitanen J; Rypáček F; Kellomäki M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():280-9. PubMed ID: 25175215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors.
    Koh WG; Pishko MV
    Anal Bioanal Chem; 2006 Aug; 385(8):1389-97. PubMed ID: 16847626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mild strategy to encapsulate enzyme into hydrogel layer grafted on polymeric substrate.
    Zhu X; Ma Y; Zhao C; Lin Z; Zhang L; Chen R; Yang W
    Langmuir; 2014 Dec; 30(50):15229-37. PubMed ID: 25489918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrapment of Saccharomyces cerevisiae and 3T3 fibroblast cells into blue light cured hydrogels.
    Mishra S; Scarano FJ; Calvert P
    J Biomed Mater Res A; 2012 Oct; 100(10):2829-38. PubMed ID: 22678829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design.
    Rossow T; Bayer S; Albrecht R; Tzschucke CC; Seiffert S
    Macromol Rapid Commun; 2013 Sep; 34(17):1401-7. PubMed ID: 23929582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays.
    Liu J; Gao D; Li HF; Lin JM
    Lab Chip; 2009 May; 9(9):1301-5. PubMed ID: 19370254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-guided, Laser-based Fabrication of Vascular-derived Microfluidic Networks.
    Heintz KA; Mayerich D; Slater JH
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and mechanical characterization of hydrogel-based 3D cell-like structures.
    Kumar R; Dzikonski D; Bekker E; Vornhusen R; Vitali V; Imbrock J; Denz C
    Opt Express; 2023 Aug; 31(18):29174-29186. PubMed ID: 37710723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photopatterning of Hydrogel Microarrays in Closed Microchips.
    Gumuscu B; Bomer JG; van den Berg A; Eijkel JC
    Biomacromolecules; 2015 Dec; 16(12):3802-10. PubMed ID: 26558488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation.
    Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Cell Alignment Using Two-Photon Direct Laser Writing-Patterned Hydrogels in 2D and 3D.
    Song J; Michas C; Chen CS; White AE; Grinstaff MW
    Macromol Biosci; 2021 May; 21(5):e2100051. PubMed ID: 33738917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micropatterning of proteins on the surface of three-dimensional poly(ethylene glycol) hydrogel microstructures.
    Kim DN; Lee W; Koh WG
    Anal Chim Acta; 2008 Feb; 609(1):59-65. PubMed ID: 18243874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K; Birch MA
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.