These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 29288337)
1. A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Daraghmeh A; Hussain S; Saadeddin I; Servera L; Xuriguera E; Cornet A; Cirera A Nanoscale Res Lett; 2017 Dec; 12(1):639. PubMed ID: 29288337 [TBL] [Abstract][Full Text] [Related]
2. Carbon nanofibers grafted on activated carbon as an electrode in high-power supercapacitors. Gryglewicz G; Śliwak A; Béguin F ChemSusChem; 2013 Aug; 6(8):1516-22. PubMed ID: 23794416 [TBL] [Abstract][Full Text] [Related]
3. Cellulose nanofibers as effective binders for activated biochar-derived high-performance supercapacitors. Mian MM; Kamana IML; An X; Abbas SC; Ahommed MS; He Z; Ni Y Carbohydr Polym; 2023 Feb; 301(Pt B):120353. PubMed ID: 36446512 [TBL] [Abstract][Full Text] [Related]
4. From Chromonic Self-Assembly to Hollow Carbon Nanofibers: Efficient Materials in Supercapacitor and Vapor-Sensing Applications. Magana JR; Kolen'ko YV; Deepak FL; Solans C; Shrestha RG; Hill JP; Ariga K; Shrestha LK; Rodriguez-Abreu C ACS Appl Mater Interfaces; 2016 Nov; 8(45):31231-31238. PubMed ID: 27775339 [TBL] [Abstract][Full Text] [Related]
5. Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance. Mohd Abdah MAA; Azman NHN; Kulandaivalu S; Sulaiman Y Sci Rep; 2019 Nov; 9(1):16782. PubMed ID: 31728061 [TBL] [Abstract][Full Text] [Related]
6. Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors. Anand S; Ahmad MW; Fatima A; Kumar A; Bharadwaj A; Yang DJ; Choudhury A Nanotechnology; 2021 Sep; 32(49):. PubMed ID: 34433156 [TBL] [Abstract][Full Text] [Related]
7. Nitrogen-Doped Activated Hollow Carbon Nanofibers with Controlled Hierarchical Pore Structures for High-Performance, Binder-Free, Flexible Supercapacitor Electrodes. Lim T; Seo BH; Kim SJ; Han S; Lee W; Suk JW ACS Omega; 2024 Feb; 9(7):8247-8254. PubMed ID: 38405492 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Electrochemical Properties of Porous Carbon Nanofiber Electrodes Derived from New Precursor Polymer: 6FDA-TFMB. Jeon B; Ha T; Lee DY; Choi MS; Lee SW; Jung KH Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824701 [TBL] [Abstract][Full Text] [Related]
9. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors. Manikandan R; Raj CJ; Moulton SE; Todorov TS; Yu KH; Kim BC Chemistry; 2021 Jan; 27(2):669-682. PubMed ID: 32700787 [TBL] [Abstract][Full Text] [Related]
10. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors. Luo QP; Huang L; Gao X; Cheng Y; Yao B; Hu Z; Wan J; Xiao X; Zhou J Nanotechnology; 2015 Jul; 26(30):304004. PubMed ID: 26152815 [TBL] [Abstract][Full Text] [Related]
11. Highly Flexible Freestanding Porous Carbon Nanofibers for Electrodes Materials of High-Performance All-Carbon Supercapacitors. Liu Y; Zhou J; Chen L; Zhang P; Fu W; Zhao H; Ma Y; Pan X; Zhang Z; Han W; Xie E ACS Appl Mater Interfaces; 2015 Oct; 7(42):23515-20. PubMed ID: 26449440 [TBL] [Abstract][Full Text] [Related]
12. Surface crosslinking of 6FDA-durene nanofibers for porous carbon nanofiber electrodes in electrochemical double layer capacitors. Kim SJ; Son YJ; Jeon B; Han YS; Kim YJ; Jung KH Nanotechnology; 2020 May; 31(21):215404. PubMed ID: 32032014 [TBL] [Abstract][Full Text] [Related]
13. Biomass-Based Carbon Nanofibers Prepared by Electrospinning for Supercapacitor. Zhang YQ; Shi GF; Chen B; Wang GY; Guo TC J Nanosci Nanotechnol; 2018 Aug; 18(8):5731-5737. PubMed ID: 29458633 [TBL] [Abstract][Full Text] [Related]
14. Advanced Supercapacitors Based on Porous Hollow Carbon Nanofiber Electrodes with High Specific Capacitance and Large Energy Density. Liu Y; Liu Q; Wang L; Yang X; Yang W; Zheng J; Hou H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4777-4786. PubMed ID: 31898452 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers. Cai J; Niu H; Li Z; Du Y; Cizek P; Xie Z; Xiong H; Lin T ACS Appl Mater Interfaces; 2015 Jul; 7(27):14946-53. PubMed ID: 26087346 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical Performance of Chemically Activated Carbons from Sawdust as Supercapacitor Electrodes. Nazhipkyzy M; Yeleuov M; Sultakhan ST; Maltay AB; Zhaparova AA; Assylkhanova DD; Nemkayeva RR Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234522 [TBL] [Abstract][Full Text] [Related]
18. Converting Corncob to Activated Porous Carbon for Supercapacitor Application. Yang S; Zhang K Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29561807 [TBL] [Abstract][Full Text] [Related]
19. High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Aval LF; Ghoranneviss M; Pour GB Heliyon; 2018 Nov; 4(11):e00862. PubMed ID: 30761358 [TBL] [Abstract][Full Text] [Related]
20. Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: controlled fabrication and high capacitive behavior. Mu J; Chen B; Guo Z; Zhang M; Zhang Z; Shao C; Liu Y J Colloid Interface Sci; 2011 Apr; 356(2):706-12. PubMed ID: 21300365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]