These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 29288459)

  • 1. Methods to Quantify Biotic-Induced Stress in Plants.
    Bach-Pages M; Preston GM
    Methods Mol Biol; 2018; 1734():241-255. PubMed ID: 29288459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants.
    Jambunathan N
    Methods Mol Biol; 2010; 639():292-8. PubMed ID: 20387054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS in biotic interactions.
    Torres MA
    Physiol Plant; 2010 Apr; 138(4):414-29. PubMed ID: 20002601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of β-glucan induced respiratory burst measured by nitroblue tetrazolium assay and real-time luminol-enhanced chemiluminescence assay in common carp (Cyprinus carpio L.).
    Vera-Jimenez NI; Pietretti D; Wiegertjes GF; Nielsen ME
    Fish Shellfish Immunol; 2013 May; 34(5):1216-22. PubMed ID: 23454430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of ROS Generated by Arabidopsis Xanthine Dehydrogenase1 (AtXDH1) Using Nitroblue Tetrazolium (NBT) and 3,3'-Diaminobenzidine (DAP).
    Soltabayeva A; Sagi M
    Methods Mol Biol; 2024; 2798():65-77. PubMed ID: 38587736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas.
    Fones H; Preston GM
    FEMS Microbiol Lett; 2012 Feb; 327(1):1-8. PubMed ID: 22092667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The apoplastic oxidative burst in response to biotic stress in plants: a three-component system.
    Bolwell GP; Bindschedler LV; Blee KA; Butt VS; Davies DR; Gardner SL; Gerrish C; Minibayeva F
    J Exp Bot; 2002 May; 53(372):1367-76. PubMed ID: 11997382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS and RNS in plant physiology: an overview.
    Del Río LA
    J Exp Bot; 2015 May; 66(10):2827-37. PubMed ID: 25873662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network.
    Quan LJ; Zhang B; Shi WW; Li HY
    J Integr Plant Biol; 2008 Jan; 50(1):2-18. PubMed ID: 18666947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.
    Anderson RG; Casady MS; Fee RA; Vaughan MM; Deb D; Fedkenheuer K; Huffaker A; Schmelz EA; Tyler BM; McDowell JM
    Plant J; 2012 Dec; 72(6):882-93. PubMed ID: 22709376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of superoxide anion and hydrogen peroxide during replication of two unrelated plant RNA viruses in Nicotiana benthamiana.
    Hyodo K; Suzuki N; Mise K; Okuno T
    Plant Signal Behav; 2017 Jun; 12(6):e1338223. PubMed ID: 28594275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative determination of superoxide in plant leaves using a modified NBT staining method.
    Bournonville CF; Díaz-Ricci JC
    Phytochem Anal; 2011; 22(3):268-71. PubMed ID: 21360621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Nicotiana benthamiana immune responses caused by heterologous plant genes from Pinellia ternata.
    Abbas HMK; Xiang J; Ahmad Z; Wang L; Dong W
    BMC Plant Biol; 2018 Dec; 18(1):357. PubMed ID: 30558544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Xanthomonas campestris pv. vesicatoria Type-3 Effector XopB Inhibits Plant Defence Responses by Interfering with ROS Production.
    Priller JP; Reid S; Konein P; Dietrich P; Sonnewald S
    PLoS One; 2016; 11(7):e0159107. PubMed ID: 27398933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice.
    Hayashi K; Fujita Y; Ashizawa T; Suzuki F; Nagamura Y; Hayano-Saito Y
    Plant J; 2016 Jan; 85(1):46-56. PubMed ID: 26603141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species in plants: an invincible fulcrum for biotic stress mitigation.
    Tyagi S; Shah A; Karthik K; Rathinam M; Rai V; Chaudhary N; Sreevathsa R
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):5945-5955. PubMed ID: 36063177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pectobacterium carotovorum elicits plant cell death with DspE/F but the P. carotovorum DspE does not suppress callose or induce expression of plant genes early in plant-microbe interactions.
    Kim HS; Thammarat P; Lommel SA; Hogan CS; Charkowski AO
    Mol Plant Microbe Interact; 2011 Jul; 24(7):773-86. PubMed ID: 21469936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Under fungal attack on a metalliferous soil: ROS or not ROS? Insights from Silene paradoxa L. growing under copper stress.
    Taiti C; Giorni E; Colzi I; Pignattelli S; Bazihizina N; Buccianti A; Luti S; Pazzagli L; Mancuso S; Gonnelli C
    Environ Pollut; 2016 Mar; 210():282-92. PubMed ID: 26799504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species: metabolism, oxidative stress, and signal transduction.
    Apel K; Hirt H
    Annu Rev Plant Biol; 2004; 55():373-99. PubMed ID: 15377225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.