These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29288537)

  • 1. Evolution of Self-Propelled Objects: From the Viewpoint of Nonlinear Science.
    Suematsu NJ; Nakata S
    Chemistry; 2018 Apr; 24(24):6308-6324. PubMed ID: 29288537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillation of Speed of a Self-Propelled Belousov-Zhabotinsky Droplet.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2016 Sep; 7(17):3424-8. PubMed ID: 27532330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments.
    Nakata S; Nagayama M; Kitahata H; Suematsu NJ; Hasegawa T
    Phys Chem Chem Phys; 2015 Apr; 17(16):10326-38. PubMed ID: 25826144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.
    Suematsu NJ; Sasaki T; Nakata S; Kitahata H
    Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Dynamics in the Spontaneous Motion of an Aqueous Droplet.
    Suematsu NJ; Saikusa K; Nagata T; Izumi S
    Langmuir; 2019 Sep; 35(35):11601-11607. PubMed ID: 31397577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface.
    Watahiki Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    Langmuir; 2018 May; 34(19):5487-5494. PubMed ID: 29693399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.
    Miura S; Banno T; Tonooka T; Osaki T; Takeuchi S; Toyota T
    Langmuir; 2014 Jul; 30(27):7977-85. PubMed ID: 24934718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.
    Wang W; Duan W; Ahmed S; Sen A; Mallouk TE
    Acc Chem Res; 2015 Jul; 48(7):1938-46. PubMed ID: 26057233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic Oscillatory Motion of a Self-Propelled Motor Driven by Decomposition of H
    Nakata S; Nomura M; Yamamoto H; Izumi S; Suematsu NJ; Ikura Y; Amemiya T
    Angew Chem Int Ed Engl; 2017 Jan; 56(3):861-864. PubMed ID: 27900838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swimming droplets driven by a surface wave.
    Ebata H; Sano M
    Sci Rep; 2015 Feb; 5():8546. PubMed ID: 25708871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length.
    Nishi K; Wakai K; Ueda T; Yoshii M; Ikura YS; Nishimori H; Nakata S; Nagayama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022910. PubMed ID: 26382479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion force induced collective motion of microtubules driven by kinesin.
    Inoue D; Mahmot B; Kabir AM; Farhana TI; Tokuraku K; Sada K; Konagaya A; Kakugo A
    Nanoscale; 2015 Nov; 7(43):18054-61. PubMed ID: 26260025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous motion and deformation of a self-propelled droplet.
    Yoshinaga N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012913. PubMed ID: 24580303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a product on spontaneous droplet motion driven by a chemical reaction of surfactant.
    Tanabe T; Ogasawara T; Suematsu NJ
    Phys Rev E; 2020 Aug; 102(2-1):023102. PubMed ID: 32942422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous mode-selection in the self-propelled motion of a solid/liquid composite driven by interfacial instability.
    Takabatake F; Magome N; Ichikawa M; Yoshikawa K
    J Chem Phys; 2011 Mar; 134(11):114704. PubMed ID: 21428653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous Mode Switching of Self-Propelled Droplet Motion Induced by a Clock Reaction in the Belousov-Zhabotinsky Medium.
    Suematsu NJ; Mori Y; Amemiya T; Nakata S
    J Phys Chem Lett; 2021 Aug; 12(31):7526-7530. PubMed ID: 34346682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General criteria for determining rotation or oscillation in a two-dimensional axisymmetric system.
    Koyano Y; Yoshinaga N; Kitahata H
    J Chem Phys; 2015 Jul; 143(1):014117. PubMed ID: 26156475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surfactant reaction model for the reciprocating motion of a self-propelled droplet.
    Tanaka S; Nakata S; Nagayama M
    Soft Matter; 2021 Jan; 17(2):388-396. PubMed ID: 33174574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.