These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 29288594)
1. Bacillus amyloliquefaciens induces production of a novel blennolide K in coculture of Setophoma terrestris. Arora D; Chashoo G; Singamaneni V; Sharma N; Gupta P; Jaglan S J Appl Microbiol; 2018 Mar; 124(3):730-739. PubMed ID: 29288594 [TBL] [Abstract][Full Text] [Related]
2. Biosynthetically Distinct Cytotoxic Polyketides from El-Elimat T; Figueroa M; Raja HA; Graf TN; Swanson SM; Falkinham JO; Wani MC; Pearce CJ; Oberlies NH European J Org Chem; 2015 Jan; 2015(1):109-121. PubMed ID: 25574154 [TBL] [Abstract][Full Text] [Related]
3. Co-culture of Bacillus amyloliquefaciens ACCC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Wu Q; Ni M; Dou K; Tang J; Ren J; Yu C; Chen J Microb Cell Fact; 2018 Oct; 17(1):155. PubMed ID: 30285749 [TBL] [Abstract][Full Text] [Related]
4. Xanthone derivatives from the fermentation products of an endophytic fungus Phomopsis sp. Meng Y; Yang Y; Qin Y; Xia C; Zhou M; Gao X; Du G; Hu Q Nat Prod Commun; 2015 Feb; 10(2):305-8. PubMed ID: 25920268 [TBL] [Abstract][Full Text] [Related]
5. Diversonol and blennolide derivatives from the endophytic fungus Microdiplodia sp.: absolute configuration of diversonol. Siddiqui IN; Zahoor A; Hussain H; Ahmed I; Ahmad VU; Padula D; Draeger S; Schulz B; Meier K; Steinert M; Kurtán T; Flörke U; Pescitelli G; Krohn K J Nat Prod; 2011 Mar; 74(3):365-73. PubMed ID: 21244021 [TBL] [Abstract][Full Text] [Related]
6. Production of surfactin from waste distillers' grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Zhi Y; Wu Q; Xu Y Bioresour Technol; 2017 Jul; 235():96-103. PubMed ID: 28365354 [TBL] [Abstract][Full Text] [Related]
7. Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Tanaka K; Fukuda M; Amaki Y; Sakaguchi T; Inai K; Ishihara A; Nakajima H Pest Manag Sci; 2017 Dec; 73(12):2419-2428. PubMed ID: 28560847 [TBL] [Abstract][Full Text] [Related]
8. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements. Gu Y; Zheng J; Feng J; Cao M; Gao W; Quan Y; Dang Y; Wang Y; Wang S; Song C Appl Microbiol Biotechnol; 2017 May; 101(10):4163-4174. PubMed ID: 28197690 [TBL] [Abstract][Full Text] [Related]
9. New mono- and dimeric members of the secalonic acid family: blennolides A-G isolated from the fungus Blennoria sp. Zhang W; Krohn K; ; Flörke U; Pescitelli G; Di Bari L; Antus S; Kurtán T; Rheinheimer J; Draeger S; Schulz B Chemistry; 2008; 14(16):4913-23. PubMed ID: 18425741 [TBL] [Abstract][Full Text] [Related]
10. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Gotor-Vila A; Teixidó N; Di Francesco A; Usall J; Ugolini L; Torres R; Mari M Food Microbiol; 2017 Jun; 64():219-225. PubMed ID: 28213029 [TBL] [Abstract][Full Text] [Related]
11. [Coculture of actinomycetes with Bacillus subtilis and its effect on the bioactive secondary metabolites]. Huang B; Liu N; Huang Y; Chen J Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):932-40. PubMed ID: 19777825 [TBL] [Abstract][Full Text] [Related]
12. Bioactive prenylated xanthones from the young fruits and flowers of Garcinia cowa. Sriyatep T; Siridechakorn I; Maneerat W; Pansanit A; Ritthiwigrom T; Andersen RJ; Laphookhieo S J Nat Prod; 2015 Feb; 78(2):265-71. PubMed ID: 25651042 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose. Kim JD; Jeon BJ; Han JW; Park MY; Kang SA; Kim BS Pest Manag Sci; 2016 Aug; 72(8):1529-36. PubMed ID: 26518268 [TBL] [Abstract][Full Text] [Related]
14. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Torres MJ; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC Microbiol Res; 2016 Jan; 182():31-9. PubMed ID: 26686611 [TBL] [Abstract][Full Text] [Related]
15. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Wang Y; Wu Y; Wang Y; Fu A; Gong L; Li W; Li Y Appl Microbiol Biotechnol; 2017 Apr; 101(7):3015-3026. PubMed ID: 27957629 [TBL] [Abstract][Full Text] [Related]
16. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens. Gao W; Zhang Z; Feng J; Dang Y; Quan Y; Gu Y; Wang S; Song C FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481703 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing. Kröber M; Verwaaijen B; Wibberg D; Winkler A; Pühler A; Schlüter A J Biotechnol; 2016 Aug; 231():212-223. PubMed ID: 27312701 [TBL] [Abstract][Full Text] [Related]
18. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Souto GI; Correa OS; Montecchia MS; Kerber NL; Pucheu NL; Bachur M; García AF J Appl Microbiol; 2004; 97(6):1247-56. PubMed ID: 15546416 [TBL] [Abstract][Full Text] [Related]