These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29288622)

  • 41. Acquiring Control: The Evolution of Stomatal Signalling Pathways.
    Sussmilch FC; Schultz J; Hedrich R; Roelfsema MRG
    Trends Plant Sci; 2019 Apr; 24(4):342-351. PubMed ID: 30797685
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stomatal Blue Light Response Is Present in Early Vascular Plants.
    Doi M; Kitagawa Y; Shimazaki K
    Plant Physiol; 2015 Oct; 169(2):1205-13. PubMed ID: 26307440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest.
    Ichie T; Inoue Y; Takahashi N; Kamiya K; Kenzo T
    J Plant Res; 2016 Jul; 129(4):625-635. PubMed ID: 26879931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control.
    Haworth M; Killi D; Materassi A; Raschi A
    Am J Bot; 2015 May; 102(5):677-88. PubMed ID: 26022482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses.
    Taylor SH; Franks PJ; Hulme SP; Spriggs E; Christin PA; Edwards EJ; Woodward FI; Osborne CP
    New Phytol; 2012 Jan; 193(2):387-96. PubMed ID: 22040513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Permanently open stomata of aquatic angiosperms display modified cellulose crystallinity patterns.
    Shtein I; Popper ZA; Harpaz-Saad S
    Plant Signal Behav; 2017 Jul; 12(7):e1339858. PubMed ID: 28718691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Slow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
    Zhang SB; Guan ZJ; Chang W; Hu H; Yin Q; Cao KF
    Physiol Plant; 2011 Jun; 142(2):118-27. PubMed ID: 21241312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrastructure and development of non-contiguous stomatal clusters and helicocytic patterning in Begonia.
    Rudall PJ; Julier ACM; Kidner CA
    Ann Bot; 2018 Nov; 122(5):767-776. PubMed ID: 29186307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana.
    Wang FF; Lian HL; Kang CY; Yang HQ
    Mol Plant; 2010 Jan; 3(1):246-59. PubMed ID: 19965572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth.
    Resco de Dios V; Loik ME; Smith R; Aspinwall MJ; Tissue DT
    Plant Cell Environ; 2016 Jan; 39(1):3-11. PubMed ID: 26147129
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light-mediated stomatal development.
    Meng LS; Li C; Xu MK; Sun XD; Wan W; Cao XY; Zhang JL; Chen KM
    Plant Cell Environ; 2018 Jul; 41(7):1645-1656. PubMed ID: 29645276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shifts in stomatal traits following the domestication of plant species.
    Milla R; de Diego-Vico N; Martín-Robles N
    J Exp Bot; 2013 Aug; 64(11):3137-46. PubMed ID: 23918960
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants.
    Rudall PJ; Hilton J; Bateman RM
    New Phytol; 2013 Nov; 200(3):598-614. PubMed ID: 23909825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.
    Hepworth C; Turner C; Landim MG; Cameron D; Gray JE
    PLoS One; 2016; 11(6):e0156930. PubMed ID: 27275842
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characteristics and correlations of leaf stomata in different Aleurites montana provenances.
    Hong T; Lin H; He D
    PLoS One; 2018; 13(12):e0208899. PubMed ID: 30562378
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stomatal traits as a determinant of superior salinity tolerance in wild barley.
    Kiani-Pouya A; Rasouli F; Rabbi B; Falakboland Z; Yong M; Chen ZH; Zhou M; Shabala S
    J Plant Physiol; 2020 Feb; 245():153108. PubMed ID: 31927218
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationship between stomatal density, size and speed of opening in Sumatran rainforest species.
    Kardiman R; Ræbild A
    Tree Physiol; 2018 May; 38(5):696-705. PubMed ID: 29186586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa.
    Yarkhunova Y; Edwards CE; Ewers BE; Baker RL; Aston TL; McClung CR; Lou P; Weinig C
    New Phytol; 2016 Apr; 210(1):133-44. PubMed ID: 26618783
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Linkages between stomatal density and minor leaf vein density across different altitudes and growth forms.
    Zhang M; Gao H; Chen S; Wang X; Mo W; Yang X; Wang X; Wang Z; Wang R
    Front Plant Sci; 2022; 13():1064344. PubMed ID: 36561450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Passive origins of stomatal control in vascular plants.
    Brodribb TJ; McAdam SA
    Science; 2011 Feb; 331(6017):582-5. PubMed ID: 21163966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.