These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 29288924)

  • 1. Short-term effects of electrical nerve stimulation on spinal reciprocal inhibition depend on gait phase during passive stepping.
    Obata H; Ogawa T; Milosevic M; Kawashima N; Nakazawa K
    J Electromyogr Kinesiol; 2018 Feb; 38():151-154. PubMed ID: 29288924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term effect of electrical nerve stimulation on spinal reciprocal inhibition during robot-assisted passive stepping in humans.
    Obata H; Ogawa T; Kitamura T; Masugi Y; Takahashi M; Kawashima N; Nakazawa K
    Eur J Neurosci; 2015 Sep; 42(6):2283-8. PubMed ID: 26108136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans.
    Mummidisetty CK; Smith AC; Knikou M
    Clin Neurophysiol; 2013 Mar; 124(3):557-64. PubMed ID: 23046639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles.
    Thompson AK; Doran B; Stein RB
    Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of active pedaling combined with electrical stimulation on spinal reciprocal inhibition.
    Yamaguchi T; Fujiwara T; Saito K; Tanabe S; Muraoka Y; Otaka Y; Osu R; Tsuji T; Hase K; Liu M
    J Electromyogr Kinesiol; 2013 Feb; 23(1):190-4. PubMed ID: 22959066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury.
    Knikou M; Smith AC; Mummidisetty CK
    J Neurophysiol; 2015 Apr; 113(7):2447-60. PubMed ID: 25609110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans.
    Perez MA; Field-Fote EC; Floeter MK
    J Neurosci; 2003 Mar; 23(6):2014-8. PubMed ID: 12657659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced reciprocal inhibition during assisted stepping in human spinal cord injury.
    Knikou M; Mummidisetty CK
    Exp Neurol; 2011 Sep; 231(1):104-12. PubMed ID: 21684274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hip joint angle changes on intersegmental spinal coupling in human spinal cord injury.
    Knikou M
    Exp Brain Res; 2005 Dec; 167(3):381-93. PubMed ID: 16059682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.
    Yamaguchi T; Fujiwara T; Tsai YA; Tang SC; Kawakami M; Mizuno K; Kodama M; Masakado Y; Liu M
    Exp Brain Res; 2016 Jun; 234(6):1469-78. PubMed ID: 26790423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.
    Kubota S; Hirano M; Morishita T; Uehara K; Funase K
    Neuroreport; 2015 Mar; 26(5):249-53. PubMed ID: 25719751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors.
    Koyama S; Tanabe S; Takeda K; Sakurai H; Kanada Y
    Somatosens Mot Res; 2016 Mar; 33(1):8-15. PubMed ID: 26949041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing.
    Fung J; Barbeau H
    J Neurophysiol; 1994 Nov; 72(5):2090-104. PubMed ID: 7884446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans.
    Morita H; Petersen N; Christensen LO; Sinkjaer T; Nielsen J
    J Neurophysiol; 1998 Aug; 80(2):610-20. PubMed ID: 9705454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulations of soleus H-reflex excitability during gait initiation: central versus peripheral influences.
    Trimble MH; Brunt D; Jeon HS; Kim HD
    Muscle Nerve; 2001 Oct; 24(10):1371-9. PubMed ID: 11562919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude modulation of the soleus H reflex in the human during active and passive stepping movements.
    Brooke JD; Cheng J; Misiaszek JE; Lafferty K
    J Neurophysiol; 1995 Jan; 73(1):102-11. PubMed ID: 7714556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function of group IB inhibition during assisted stepping in human spinal cord injury.
    Knikou M
    J Clin Neurophysiol; 2012 Jun; 29(3):271-7. PubMed ID: 22659724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive.
    Khaslavskaia S; Sinkjaer T
    Exp Brain Res; 2005 May; 162(4):497-502. PubMed ID: 15702321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.