These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798 [TBL] [Abstract][Full Text] [Related]
3. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic neural probes: in vivo tools for advancing neuroscience. Sim JY; Haney MP; Park SI; McCall JG; Jeong JW Lab Chip; 2017 Apr; 17(8):1406-1435. PubMed ID: 28349140 [TBL] [Abstract][Full Text] [Related]
5. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Kim CY; Ku MJ; Qazi R; Nam HJ; Park JW; Nam KS; Oh S; Kang I; Jang JH; Kim WY; Kim JH; Jeong JW Nat Commun; 2021 Jan; 12(1):535. PubMed ID: 33483493 [TBL] [Abstract][Full Text] [Related]
6. Wireless and battery-free technologies for neuroengineering. Won SM; Cai L; Gutruf P; Rogers JA Nat Biomed Eng; 2023 Apr; 7(4):405-423. PubMed ID: 33686282 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in neurotechnologies with broad potential for neuroscience research. Vázquez-Guardado A; Yang Y; Bandodkar AJ; Rogers JA Nat Neurosci; 2020 Dec; 23(12):1522-1536. PubMed ID: 33199897 [TBL] [Abstract][Full Text] [Related]
8. Soft, wireless and subdermally implantable recording and neuromodulation tools. Cai L; Gutruf P J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33607646 [TBL] [Abstract][Full Text] [Related]
9. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Lu L; Gutruf P; Xia L; Bhatti DL; Wang X; Vazquez-Guardado A; Ning X; Shen X; Sang T; Ma R; Pakeltis G; Sobczak G; Zhang H; Seo DO; Xue M; Yin L; Chanda D; Sheng X; Bruchas MR; Rogers JA Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1374-E1383. PubMed ID: 29378934 [TBL] [Abstract][Full Text] [Related]
10. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Kim TI; McCall JG; Jung YH; Huang X; Siuda ER; Li Y; Song J; Song YM; Pao HA; Kim RH; Lu C; Lee SD; Song IS; Shin G; Al-Hasani R; Kim S; Tan MP; Huang Y; Omenetto FG; Rogers JA; Bruchas MR Science; 2013 Apr; 340(6129):211-6. PubMed ID: 23580530 [TBL] [Abstract][Full Text] [Related]
11. Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources. Chen FB; Budgett DM; Sun Y; Malpas S; McCormick D; Freestone PS IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):28-34. PubMed ID: 27542183 [TBL] [Abstract][Full Text] [Related]
12. Implantable optoelectronic probes for in vivo optogenetics. Iseri E; Kuzum D J Neural Eng; 2017 Jun; 14(3):031001. PubMed ID: 28198703 [TBL] [Abstract][Full Text] [Related]
13. Future of Neural Interfaces. Laiwalla F; Nurmikko A Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678 [TBL] [Abstract][Full Text] [Related]
14. Ultraminiaturized photovoltaic and radio frequency powered optoelectronic systems for wireless optogenetics. Park SI; Shin G; Banks A; McCall JG; Siuda ER; Schmidt MJ; Chung HU; Noh KN; Mun JG; Rhodes J; Bruchas MR; Rogers JA J Neural Eng; 2015 Oct; 12(5):056002-56002. PubMed ID: 26193450 [TBL] [Abstract][Full Text] [Related]
15. Neuromorphic hardware databases for exploring structure-function relationships in the brain. Breslin C; O'Lenskie A Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701 [TBL] [Abstract][Full Text] [Related]
16. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Zhang Y; Castro DC; Han Y; Wu Y; Guo H; Weng Z; Xue Y; Ausra J; Wang X; Li R; Wu G; Vázquez-Guardado A; Xie Y; Xie Z; Ostojich D; Peng D; Sun R; Wang B; Yu Y; Leshock JP; Qu S; Su CJ; Shen W; Hang T; Banks A; Huang Y; Radulovic J; Gutruf P; Bruchas MR; Rogers JA Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21427-21437. PubMed ID: 31601737 [TBL] [Abstract][Full Text] [Related]
17. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889 [TBL] [Abstract][Full Text] [Related]
18. Wireless multilateral devices for optogenetic studies of individual and social behaviors. Yang Y; Wu M; Vázquez-Guardado A; Wegener AJ; Grajales-Reyes JG; Deng Y; Wang T; Avila R; Moreno JA; Minkowicz S; Dumrongprechachan V; Lee J; Zhang S; Legaria AA; Ma Y; Mehta S; Franklin D; Hartman L; Bai W; Han M; Zhao H; Lu W; Yu Y; Sheng X; Banks A; Yu X; Donaldson ZR; Gereau RW; Good CH; Xie Z; Huang Y; Kozorovitskiy Y; Rogers JA Nat Neurosci; 2021 Jul; 24(7):1035-1045. PubMed ID: 33972800 [TBL] [Abstract][Full Text] [Related]
19. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036 [TBL] [Abstract][Full Text] [Related]