These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29289027)

  • 21. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optogenetic Approaches to Drug Discovery in Neuroscience and Beyond.
    Zhang H; Cohen AE
    Trends Biotechnol; 2017 Jul; 35(7):625-639. PubMed ID: 28552428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Miniaturized, Battery-Free Optofluidic Systems with Potential for Wireless Pharmacology and Optogenetics.
    Noh KN; Park SI; Qazi R; Zou Z; Mickle AD; Grajales-Reyes JG; Jang KI; Gereau RW; Xiao J; Rogers JA; Jeong JW
    Small; 2018 Jan; 14(4):. PubMed ID: 29215787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm
    Moazeni S; Pollmann E; Boominathan V; Cardoso FA; Robinson J; Veeraraghavan A; Shepard K
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1295-1305. PubMed ID: 34951854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in Electrical Neural Interface Engineering: Minimal Invasiveness, Longevity, and Scalability.
    Luan L; Robinson JT; Aazhang B; Chi T; Yang K; Li X; Rathore H; Singer A; Yellapantula S; Fan Y; Yu Z; Xie C
    Neuron; 2020 Oct; 108(2):302-321. PubMed ID: 33120025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics.
    Burton A; Obaid SN; Vázquez-Guardado A; Schmit MB; Stuart T; Cai L; Chen Z; Kandela I; Haney CR; Waters EA; Cai H; Rogers JA; Lu L; Gutruf P
    Proc Natl Acad Sci U S A; 2020 Feb; 117(6):2835-2845. PubMed ID: 31974306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. "Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca(2+) fluoroimaging".
    Kobayashi T; Haruta M; Sasagawa K; Matsumata M; Eizumi K; Kitsumoto C; Motoyama M; Maezawa Y; Ohta Y; Noda T; Tokuda T; Ishikawa Y; Ohta J
    Sci Rep; 2016 Feb; 6():21247. PubMed ID: 26878910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible fiber-based optoelectronics for neural interfaces.
    Park S; Loke G; Fink Y; Anikeeva P
    Chem Soc Rev; 2019 Mar; 48(6):1826-1852. PubMed ID: 30815657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation.
    Xu S; Momin M; Ahmed S; Hossain A; Veeramuthu L; Pandiyan A; Kuo CC; Zhou T
    Adv Mater; 2023 Oct; 35(42):e2303267. PubMed ID: 37726261
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience.
    Qazi R; Parker KE; Kim CY; Rill R; Norris MR; Chung J; Bilbily J; Kim JR; Walicki MC; Gereau GB; Lim H; Xiong Y; Lee JR; Tapia MA; Kravitz AV; Will MJ; Ha S; McCall JG; Jeong JW
    Nat Biomed Eng; 2022 Jun; 6(6):771-786. PubMed ID: 34824397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wireless multi-lateral optofluidic microsystems for real-time programmable optogenetics and photopharmacology.
    Wu Y; Wu M; Vázquez-Guardado A; Kim J; Zhang X; Avila R; Kim JT; Deng Y; Yu Y; Melzer S; Bai Y; Yoon H; Meng L; Zhang Y; Guo H; Hong L; Kanatzidis EE; Haney CR; Waters EA; Banks AR; Hu Z; Lie F; Chamorro LP; Sabatini BL; Huang Y; Kozorovitskiy Y; Rogers JA
    Nat Commun; 2022 Sep; 13(1):5571. PubMed ID: 36137999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals.
    Ouyang W; Lu W; Zhang Y; Liu Y; Kim JU; Shen H; Wu Y; Luan H; Kilner K; Lee SP; Lu Y; Yang Y; Wang J; Yu Y; Wegener AJ; Moreno JA; Xie Z; Wu Y; Won SM; Kwon K; Wu C; Bai W; Guo H; Liu TL; Bai H; Monti G; Zhu J; Madhvapathy SR; Trueb J; Stanslaski M; Higbee-Dempsey EM; Stepien I; Ghoreishi-Haack N; Haney CR; Kim TI; Huang Y; Ghaffari R; Banks AR; Jhou TC; Good CH; Rogers JA
    Nat Biomed Eng; 2023 Oct; 7(10):1252-1269. PubMed ID: 37106153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.
    Karatum O; Gwak MJ; Hyun J; Onal A; Koirala GR; Kim TI; Nizamoglu S
    Chem Soc Rev; 2023 May; 52(10):3326-3352. PubMed ID: 37018031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging Modalities and Implantable Technologies for Neuromodulation.
    Won SM; Song E; Reeder JT; Rogers JA
    Cell; 2020 Apr; 181(1):115-135. PubMed ID: 32220309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds.
    Ausra J; Munger SJ; Azami A; Burton A; Peralta R; Miller JE; Gutruf P
    Nat Commun; 2021 Mar; 12(1):1968. PubMed ID: 33785751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Challenges for Large-Scale Cortical Interfaces.
    Nurmikko A
    Neuron; 2020 Oct; 108(2):259-269. PubMed ID: 33120022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves.
    Zhang Y; Mickle AD; Gutruf P; McIlvried LA; Guo H; Wu Y; Golden JP; Xue Y; Grajales-Reyes JG; Wang X; Krishnan S; Xie Y; Peng D; Su CJ; Zhang F; Reeder JT; Vogt SK; Huang Y; Rogers JA; Gereau RW
    Sci Adv; 2019 Jul; 5(7):eaaw5296. PubMed ID: 31281895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation.
    Fan B; Kwon KY; Weber AJ; Li W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():450-3. PubMed ID: 25569993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.