BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29289086)

  • 1. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.
    Yuldashev PV; Ollivier S; Karzova MM; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2017 Dec; 142(6):3402. PubMed ID: 29289086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory-scale experiment to study nonlinear N-wave distortion by thermal turbulence.
    Salze É; Yuldashev P; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2014 Aug; 136(2):556-66. PubMed ID: 25096090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment.
    Averiyanov M; Ollivier S; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2011 Dec; 130(6):3595-607. PubMed ID: 22225017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.
    Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence.
    Stout TA; Sparrow VW; Blanc-Benon P
    J Acoust Soc Am; 2021 May; 149(5):3250. PubMed ID: 34241145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric turbulence effects on shaped and unshaped sonic boom signatures.
    Stout TA; Sparrow VW
    J Acoust Soc Am; 2022 May; 151(5):3280. PubMed ID: 35649900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical prediction of loudness metrics for N-waves and shaped sonic booms in kinematic turbulence.
    Carr AN; Lonzaga JB; Miller SAE
    J Acoust Soc Am; 2022 Jun; 151(6):3580. PubMed ID: 35778201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code.
    Qiao S; Jackson E; Coussios CC; Cleveland RO
    J Acoust Soc Am; 2016 Sep; 140(3):2039. PubMed ID: 27914432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of classical and low booms through kinematic turbulence with uncertain parameters.
    Leconte R; Chassaing JC; Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2022 Jun; 151(6):4207. PubMed ID: 35778163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear and nonlinear ultrasound simulations using the discontinuous Galerkin method.
    Kelly JF; Marras S; Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Apr; 143(4):2438. PubMed ID: 29716249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal nonlinear wave propagation through soft tissue.
    Valdez M; Balachandran B
    J Mech Behav Biomed Mater; 2013 Apr; 20():192-208. PubMed ID: 23510921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acoustic investigation of the near-surface turbulence on Mars.
    Chide B; Blanc-Benon P; Bertrand T; Jacob X; Lasue J; Lorenz RD; Montmessin F; Murdoch N; Pla-Garcia J; Seel F; Schröder S; Stott AE; de la Torre Juarez M; Wiens RC
    J Acoust Soc Am; 2024 Jan; 155(1):420-435. PubMed ID: 38240669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sound propagation in a turbulent atmosphere near the ground: a parabolic equation approach.
    Ostashev VE; Salomons EM; Clifford SF; Lataitis RJ; Wilson DK; Blanc-Benon P; Juvé D
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1894-908. PubMed ID: 11386544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of spark-generated N-waves in air using an optical schlieren method.
    Karzova MM; Yuldashev PV; Khokhlova VA; Ollivier S; Salze E; Blanc-Benon P
    J Acoust Soc Am; 2015 Jun; 137(6):3244-52. PubMed ID: 26093414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear focusing of acoustic shock waves at a caustic cusp.
    Marchiano R; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2005 Feb; 117(2):566-77. PubMed ID: 15759678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters.
    Massaad J; van Neer PLMJ; van Willigen DM; de Jong N; Pertijs MAP; Verweij MD
    Ultrasonics; 2021 Sep; 116():106476. PubMed ID: 34098419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of shock wave propagation in large amplitude ultrasound.
    Pinton GF; Trahey GE
    Ultrason Imaging; 2008 Jan; 30(1):44-60. PubMed ID: 18564596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weakly nonlinear propagation of focused ultrasound in bubbly liquids with a thermal effect: Derivation of two cases of Khokolov-Zabolotskaya-Kuznetsoz equations.
    Kagami S; Kanagawa T
    Ultrason Sonochem; 2022 Aug; 88():105911. PubMed ID: 35810619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.