These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29289114)

  • 1. Analytical model for predicting edge diffraction in the time domain.
    Menounou P; Nikolaou P
    J Acoust Soc Am; 2017 Dec; 142(6):3580. PubMed ID: 29289114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directive line source model: a new model for sound diffraction by half planes and wedges.
    Menounou P; Busch-Vishniac IJ; Blackstock DT
    J Acoust Soc Am; 2000 Jun; 107(6):2973-86. PubMed ID: 10875343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical and numerical methods for efficient calculation of edge diffraction by an arbitrary incident signal.
    Nikolaou P; Menounou P
    J Acoust Soc Am; 2019 Nov; 146(5):3577. PubMed ID: 31795644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approximate time domain solution for studying infinite wedge diffraction, its parameters, and characteristics.
    Menounou P; Spiropoulos MI; Nikolaou P
    J Acoust Soc Am; 2023 Feb; 153(2):1399. PubMed ID: 36859139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound diffraction by knife-edges of finite length: Integral solution, dimensionless parameters, and explicit formulas.
    Nikolaou P; Menounou P
    J Acoust Soc Am; 2024 Mar; 155(3):1719-1734. PubMed ID: 38436423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffraction of a spherical wave by a hard half-plane: Approximation of the edge field in the frequency domain.
    Ouis D
    J Acoust Soc Am; 2019 Jan; 145(1):400. PubMed ID: 30710954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of edge diffraction for more accurate room acoustics auralization.
    Torres RR; Svensson UP; Kleiner M
    J Acoust Soc Am; 2001 Feb; 109(2):600-10. PubMed ID: 11248967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic diffraction by deformed edges of finite length: theory and experiment.
    Stanton TK; Chu D; Norton GV
    J Acoust Soc Am; 2007 Dec; 122(6):3167-76. PubMed ID: 18247729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffraction by a right-angled impedance wedge: an edge source formulation.
    Hewett DP; Morris A
    J Acoust Soc Am; 2015 Feb; 137(2):633-9. PubMed ID: 25697998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order acoustic diffraction by edges of finite thickness.
    Chu D; Stanton TK; Pierce AD
    J Acoust Soc Am; 2007 Dec; 122(6):3177-94. PubMed ID: 18247730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generalized statistical Burgers equation to predict the evolution of the power spectral density of high-intensity noise in atmosphere.
    Menounou P; Athanasiadis AN
    J Acoust Soc Am; 2009 Sep; 126(3):983-94. PubMed ID: 19739711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integral equation formulation for the diffraction from convex plates and polyhedra.
    Asheim A; Svensson UP
    J Acoust Soc Am; 2013 Jun; 133(6):3681-91. PubMed ID: 23742323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative simulation of ultrasonic time of flight diffraction technique in 2D geometries using Huygens-Fresnel diffraction model: theory and experimental comparison.
    Kolkoori S; Chitti Venkata K; Balasubramaniam K
    Ultrasonics; 2015 Jan; 55():33-41. PubMed ID: 25200698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic scattering by smooth elastic cylinders insonified by directional transceivers: Monostatic theory and experiments.
    Mursaline MA; Stanton TK; Lavery AC; Fischell EM
    J Acoust Soc Am; 2023 Jul; 154(1):307-322. PubMed ID: 37449784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computation of the diffraction from complex illumination sources in extended regions of space.
    Karagounis G; De Zutter D; Vande Ginste D
    Opt Express; 2013 Dec; 21(25):30379-91. PubMed ID: 24514616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simplified analytical model for sound level prediction at shielded urban locations involving multiple diffraction and reflections.
    Wei W; Van Renterghem T; Botteldooren D
    J Acoust Soc Am; 2015 Nov; 138(5):2744-58. PubMed ID: 26627751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The diffracted field and its gradient near the edge of a thin screen.
    Hewett DP; Svensson UP
    J Acoust Soc Am; 2013 Dec; 134(6):4303. PubMed ID: 25669241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TD-UAPO diffracted field evaluation for penetrable wedges with acute apex angle.
    Frongillo M; Gennarelli G; Riccio G
    J Opt Soc Am A Opt Image Sci Vis; 2015 Jul; 32(7):1271-5. PubMed ID: 26367156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cornu's spiral in the Fresnel regime studied using ultrasound: a phase study.
    Hitachi A
    J Acoust Soc Am; 2012 Mar; 131(3):2463-71. PubMed ID: 22423795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models.
    Lipkens B
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):509-19. PubMed ID: 11837956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.