These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29289120)

  • 1. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements.
    Hill JG; Peterson KA
    J Chem Phys; 2017 Dec; 147(24):244106. PubMed ID: 29289120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation consistent basis sets for actinides. II. The atoms Ac and Np-Lr.
    Feng R; Peterson KA
    J Chem Phys; 2017 Aug; 147(8):084108. PubMed ID: 28863538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation consistent basis sets for actinides. I. The Th and U atoms.
    Peterson KA
    J Chem Phys; 2015 Feb; 142(7):074105. PubMed ID: 25702000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn.
    Balabanov NB; Peterson KA
    J Chem Phys; 2005 Aug; 123(6):64107. PubMed ID: 16122300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relativistic effects determined using the Douglas-Kroll contracted basis sets and correlation consistent basis sets with small-core relativistic pseudopotentials.
    Yockel S; Wilson AK
    J Chem Phys; 2005 May; 122(17):174310. PubMed ID: 15910035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contracted Gaussian basis sets for Douglas-Kroll-Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties.
    Jorge FE; Canal Neto A; Camiletti GG; Machado SF
    J Chem Phys; 2009 Feb; 130(6):064108. PubMed ID: 19222268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: benchmarks and new pseudopotential-based correlation consistent basis sets.
    Peterson KA; Yousaf KE
    J Chem Phys; 2010 Nov; 133(17):174116. PubMed ID: 21054015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms.
    Pantazis DA; Chen XY; Landis CR; Neese F
    J Chem Theory Comput; 2008 Jun; 4(6):908-19. PubMed ID: 26621232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements.
    Hill JG; Shaw RA
    J Chem Phys; 2021 Nov; 155(17):174113. PubMed ID: 34742216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation consistent basis sets for lanthanides: The atoms La-Lu.
    Lu Q; Peterson KA
    J Chem Phys; 2016 Aug; 145(5):054111. PubMed ID: 27497543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-electron scalar relativistic basis sets for the elements Rb-Xe.
    Rolfes JD; Neese F; Pantazis DA
    J Comput Chem; 2020 Jul; 41(20):1842-1849. PubMed ID: 32484577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation consistent basis sets for explicitly correlated wavefunctions: pseudopotential-based basis sets for the post-d main group elements Ga-Rn.
    Hill JG; Peterson KA
    J Chem Phys; 2014 Sep; 141(9):094106. PubMed ID: 25194363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmented all-electron basis sets of triple zeta quality for the lanthanides: application to structure calculations of lanthanide monoxides.
    de Oliveira AZ; Ferreira IB; Campos CT; Jorge FE; Fantin PA
    J Mol Model; 2019 Jan; 25(2):38. PubMed ID: 30648221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core-valence basis sets for Li, Be, Na, and Mg.
    Hill JG; Peterson KA
    Phys Chem Chem Phys; 2010 Sep; 12(35):10460-8. PubMed ID: 20603665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxiliary basis sets for density-fitting second-order Møller-Plesset perturbation theory: weighted core-valence correlation consistent basis sets for the 4d elements Y-Pd.
    Hill JG
    J Comput Chem; 2013 Sep; 34(25):2168-77. PubMed ID: 23828233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-consistent relativistic pseudopotentials for the 4d elements: atomic and molecular applications.
    Figgen D; Peterson KA; Stoll H
    J Chem Phys; 2008 Jan; 128(3):034110. PubMed ID: 18205491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements.
    Dyall KG
    J Phys Chem A; 2009 Nov; 113(45):12638-44. PubMed ID: 19670829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of All-Electron Basis Sets and the Scalar Relativistic Corrections in the Structure and Electronic Properties of Niobium Clusters.
    Pansini FNN; Neto AC; de Campos M; de Aquino RM
    J Phys Chem A; 2017 Aug; 121(30):5728-5734. PubMed ID: 28686436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized Slater-type basis sets for the elements 1-118.
    Van Lenthe E; Baerends EJ
    J Comput Chem; 2003 Jul; 24(9):1142-56. PubMed ID: 12759913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.