These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29289180)

  • 1. Note: A simple multi-channel optical system for modulation spectroscopies.
    Solís-Macías J; Sánchez-López JD; Castro-García R; Flores-Camacho JM; Flores-Rangel G; Ciou JJ; Chen KW; Chen CH; Lastras-Martínez LF; Balderas-Navarro RE
    Rev Sci Instrum; 2017 Dec; 88(12):126107. PubMed ID: 29289180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid reflectance-difference spectrometer for real-time semiconductor growth monitoring with sub-second time resolution.
    Núñez-Olvera O; Balderas-Navarro RE; Ortega-Gallegos J; Guevara-Macías LE; Armenta-Franco A; Lastras-Montaño MA; Lastras-Martínez LF; Lastras-Martínez A
    Rev Sci Instrum; 2012 Oct; 83(10):103109. PubMed ID: 23126753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].
    Wang ZB; Zhang R; Wang YL; Huang YF; Chen YH; Wang LF; Yang Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Feb; 34(2):569-73. PubMed ID: 24822442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research on VOC concentration detection by photoelastic modulation infrared spectrum absorption method].
    Hu M; Wang TY; Qiao ZF; Geng B; Xiao XH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Dec; 31(12):3232-5. PubMed ID: 22295766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-field optical coherence microscopy.
    Beaurepaire E; Boccara AC; Lebec M; Blanchot L; Saint-Jalmes H
    Opt Lett; 1998 Feb; 23(4):244-6. PubMed ID: 18084473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple synchronic detection at audio frequencies through a PC sound card.
    González MG; Santiago GD; Slezak VB; Peuriot AL
    Rev Sci Instrum; 2007 May; 78(5):055108. PubMed ID: 17552861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified digital lock-in amplifier for the scanning grating spectrometer.
    Wang J; Wang Z; Ji X; Liu J; Liu G
    Rev Sci Instrum; 2017 Feb; 88(2):023101. PubMed ID: 28249479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retardation correction for photoelastic modulator-based multichannel reflectance difference spectroscopy.
    Hu CG; Sun LD; Li YN; Hohage M; Flores-Camacho JM; Hu XT; Zeppenfeld P
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jun; 25(6):1240-5. PubMed ID: 18516133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multichannel Nomarski microscope with polarization modulation: performance and applications.
    Gleyzes P; Boccara AC; Saint-Jalmes H
    Opt Lett; 1997 Oct; 22(20):1529-31. PubMed ID: 18188288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem demodulation lock-in amplifier based on digital signal processor for dual-modulated spectroscopy.
    Qin J; Huang Z; Ge Y; Hou Y; Chu J
    Rev Sci Instrum; 2009 Mar; 80(3):033112. PubMed ID: 19334912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring noise frequency spectrum to improve NIR determinations.
    Xie S; Xiang B; Yu L; Deng H
    Talanta; 2009 Dec; 80(2):895-902. PubMed ID: 19836570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card.
    Werley CA; Teo SM; Nelson KA
    Rev Sci Instrum; 2011 Dec; 82(12):123108. PubMed ID: 22225200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Loco Optical Spectroscopy through a Multiple Digital Lock-In on a Linear Charge-Coupled Device (CCD) Array.
    Fonsêca H; Rativa D; Lima R
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-channel lock-in amplifier assisted femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy with efficient rejection of superfluorescence background.
    Mao P; Wang Z; Dang W; Weng Y
    Rev Sci Instrum; 2015 Dec; 86(12):123113. PubMed ID: 26724012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the surface strain induced by reconstructed surfaces of GaAs (001) using photoreflectance and reflectance-difference spectroscopies.
    Lastras-Martínez LF; Flores-Camacho JM; Lastras-Martínez A; Balderas-Navarro RE; Cardona M
    Phys Rev Lett; 2006 Feb; 96(4):047402. PubMed ID: 16486894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile digital lock-in detection technique: application to spectrofluorometry and other fields.
    Cova S; Longoni A; Freitas I
    Rev Sci Instrum; 1979 Mar; 50(3):296. PubMed ID: 18699495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Test of Low-Cost Multi-Channel Multi-Frequency Lock-In Amplifier for Health and Environment Sensing.
    Pollastrone F; Fiorani L; Bisauriya R; Menicucci I; Ciceroni C; Pizzoferrato R
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and test of a 434 MHz multi-channel amplifier system for targeted hyperthermia applicators.
    Bakker JF; Paulides MM; Westra AH; Schippers H; Van Rhoon GC
    Int J Hyperthermia; 2010; 26(2):158-70. PubMed ID: 20146570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform approach in modulation technique of experimental measurements.
    Khazimullin MV; Lebedev YA
    Rev Sci Instrum; 2010 Apr; 81(4):043110. PubMed ID: 20441328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absolute linearity characterization of lock-in amplifiers.
    Theocharous E
    Appl Opt; 2008 Mar; 47(8):1090-6. PubMed ID: 18327280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.