These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 29289182)

  • 1. Kriging modeling and SPSA adjusting PID with KPWF compensator control of IPMC gripper for mm-sized objects.
    Chen Y; Hao L; Yang H; Gao J
    Rev Sci Instrum; 2017 Dec; 88(12):125003. PubMed ID: 29289182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of a Soft-Rigid Gripper Actuated by a Linear-Extension Soft Pneumatic Actuator.
    Cheng P; Jia J; Ye Y; Wu C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.
    Feng GH; Huang WL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():241-9. PubMed ID: 25491826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive critic neural network-based object grasping control using a three-finger gripper.
    Jagannathan S; Galan G
    IEEE Trans Neural Netw; 2004 Mar; 15(2):395-407. PubMed ID: 15384532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Fabric-Based Versatile and Stiffness-Tunable Soft Gripper Integrating Soft Pneumatic Fingers and Wrist.
    Fei Y; Wang J; Pang W
    Soft Robot; 2019 Feb; 6(1):1-20. PubMed ID: 30312144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft Polymer-Actuated Compliant Microgripper with Adaptive Vibration-Controlled Grasp and Release.
    Youn JH; Koh JS; Kyung KU
    Soft Robot; 2024 Aug; 11(4):585-595. PubMed ID: 38557238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing and Self-Sensing Actuation Methods for Ionic Polymer-Metal Composite (IPMC): A Review.
    MohdIsa W; Hunt A; HosseinNia SH
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Dimensions on the Deformation Sensing Performance of Ionic Polymer-Metal Composites.
    Wang J; Wang Y; Zhu Z; Wang J; He Q; Luo M
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-detecting gripper and force feedback system for neurosurgery applications.
    Yoneyama T; Watanabe T; Kagawa H; Hamada J; Hayashi Y; Nakada M
    Int J Comput Assist Radiol Surg; 2013 Sep; 8(5):819-29. PubMed ID: 23315003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.
    Ip BC; Cui F; Tripathi A; Morgan JR
    Biofabrication; 2016 May; 8(2):025015. PubMed ID: 27221320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Novel Modular Compliant Gripper for Manipulation of Micro Objects.
    Lofroth M; Avci E
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31075913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twining plant inspired pneumatic soft robotic spiral gripper with a fiber optic twisting sensor.
    Yang M; Cooper LP; Liu N; Wang X; Fok MP
    Opt Express; 2020 Nov; 28(23):35158-35167. PubMed ID: 33182967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence-Assisted Throat Sensor Using Ionic Polymer-Metal Composite (IPMC) Material.
    Lee JH; Chee PS; Lim EH; Tan CH
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Compact Review of IPMC as Soft Actuator and Sensor: Current Trends, Challenges, and Potential Solutions From Our Recent Work.
    Hao M; Wang Y; Zhu Z; He Q; Zhu D; Luo M
    Front Robot AI; 2019; 6():129. PubMed ID: 33501144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Evaluation of a Novel Hybrid Soft Surgical Gripper for Safe Digital Nerve Manipulation.
    Guo J; Low JH; Wong YR; Yeow CH
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30875954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Control of Monolithic Compliant Gripper Using Shape Memory Alloy Wires.
    Then Mozhi G; Dhanalakshmi K; Choi SB
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universally Grasping Objects with Granular-Tendon Finger: Principle and Design.
    Nguyen VP; Dhyan SB; Han BS; Chow WT
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiGriBot: A miniature parallel robot with integrated gripping for high-throughput micromanipulation.
    Leveziel M; Haouas W; Laurent GJ; Gauthier M; Dahmouche R
    Sci Robot; 2022 Aug; 7(69):eabn4292. PubMed ID: 36001685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Hybrid Position/Force Control of a Dual-Drive Macro-Fiber-Composite Microgripper.
    Zhang J; Yang Y; Lou J; Wei Y; Fu L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D-Printed Fin Ray Effect Inspired Soft Robotic Gripper with Force Feedback.
    Yang Y; Jin K; Zhu H; Song G; Lu H; Kang L
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.