These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29289182)
21. Recent Progress in Development and Applications of Ionic Polymer-Metal Composite. Park SW; Kim SJ; Park SH; Lee J; Kim H; Kim MK Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014211 [TBL] [Abstract][Full Text] [Related]
22. Pneumatically Actuated Soft Gripper with Bistable Structures. Zhang Z; Ni X; Wu H; Sun M; Bao G; Wu H; Jiang S Soft Robot; 2022 Feb; 9(1):57-71. PubMed ID: 33416435 [TBL] [Abstract][Full Text] [Related]
23. Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Wang W; Ahn SH Soft Robot; 2017 Dec; 4(4):379-389. PubMed ID: 29251571 [TBL] [Abstract][Full Text] [Related]
24. Optimal Design of a Soft Robotic Gripper for Grasping Unknown Objects. Liu CH; Chen TL; Chiu CH; Hsu MC; Chen Y; Pai TY; Peng WG; Chiang YP Soft Robot; 2018 Aug; 5(4):452-465. PubMed ID: 29741987 [TBL] [Abstract][Full Text] [Related]
25. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles. Chen Z Robotics Biomim; 2017; 4(1):24. PubMed ID: 29264109 [TBL] [Abstract][Full Text] [Related]
26. A 3D Printed Modular Soft Gripper Integrated With Metamaterials for Conformal Grasping. Tawk C; Mutlu R; Alici G Front Robot AI; 2021; 8():799230. PubMed ID: 35071336 [TBL] [Abstract][Full Text] [Related]
27. Force Control of a 3D Printed Soft Gripper with Built-In Pneumatic Touch Sensing Chambers. Tawk C; Sariyildiz E; Alici G Soft Robot; 2022 Oct; 9(5):970-980. PubMed ID: 34705564 [TBL] [Abstract][Full Text] [Related]
28. Prediction of the Actuation Property of Cu Ionic Polymer-Metal Composites Based on Backpropagation Neural Networks. Yang L; Zhang D; Zhang X; Tian A ACS Omega; 2020 Mar; 5(8):4067-4074. PubMed ID: 32149234 [TBL] [Abstract][Full Text] [Related]
29. Design and modeling of a high-load soft robotic gripper inspired by biological winding. Li H; Yao J; Zhou P; Zhao W; Xu Y; Zhao Y Bioinspir Biomim; 2020 Feb; 15(2):026006. PubMed ID: 31822642 [TBL] [Abstract][Full Text] [Related]
30. Fabrication and characteristics of a multilayered ionic polymer metal composite based on Nafion/tetraethyl orthosilicate and Nafion/MCNT nanocomposites. He QS; Yu M; Ding Y; Dai ZD J Nanosci Nanotechnol; 2014 Oct; 14(10):7445-50. PubMed ID: 25942807 [TBL] [Abstract][Full Text] [Related]
31. A Disposable Pneumatic Microgripper for Cell Manipulation with Image-Based Force Sensing. Gursky B; Bütefisch S; Leester-Schädel M; Li K; Matheis B; Dietzel A Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31635302 [TBL] [Abstract][Full Text] [Related]
32. Synthesis of Three-Dimensional Carbon Nanostructure/Copper Nanowire for Additive Interface Layer of Ionic Polymer Metal Composite. Park S; Park M; Kim S; Jeon M Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32121134 [TBL] [Abstract][Full Text] [Related]
33. Active Tube-Shaped Actuator with Embedded Square Rod-Shaped Ionic Polymer-Metal Composites for Robotic-Assisted Manipulation. Wang Y; Liu J; Zhu D; Chen H Appl Bionics Biomech; 2018; 2018():4031705. PubMed ID: 29770160 [TBL] [Abstract][Full Text] [Related]
34. Capillary Forces between Concave Gripper and Spherical Particle for Micro-Objects Gripping. Fan Z; Liu Z; Huang C; Zhang W; Lv Z; Wang L Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800478 [TBL] [Abstract][Full Text] [Related]
35. Development of a micro-gripper using piezoelectric bimorphs. El-Sayed AM; Abo-Ismail A; El-Melegy MT; Hamzaid NA; Osman NA Sensors (Basel); 2013 May; 13(5):5826-40. PubMed ID: 23653051 [TBL] [Abstract][Full Text] [Related]
36. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects. Linghu C; Zhang S; Wang C; Yu K; Li C; Zeng Y; Zhu H; Jin X; You Z; Song J Sci Adv; 2020 Feb; 6(7):eaay5120. PubMed ID: 32110730 [TBL] [Abstract][Full Text] [Related]
37. Force detecting gripper and flexible micro manipulator for neurosurgery. Yoneyama T; Watanabe T; Kagawa H; Hamada J; Hayashi Y; Nakada M Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6695-9. PubMed ID: 22255875 [TBL] [Abstract][Full Text] [Related]
38. Microvalves based on ionic polymer-metal composites for microfluidic application. Yun JS; Yang KS; Choi NJ; Lee HK; Moon SE; Kim DH J Nanosci Nanotechnol; 2011 Jul; 11(7):5975-9. PubMed ID: 22121642 [TBL] [Abstract][Full Text] [Related]
39. A vacuum microgripping tool with integrated vibration releasing capability. Rong W; Fan Z; Wang L; Xie H; Sun L Rev Sci Instrum; 2014 Aug; 85(8):085002. PubMed ID: 25173301 [TBL] [Abstract][Full Text] [Related]
40. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance. Feng GH; Liu KM Sensors (Basel); 2014 May; 14(5):8380-97. PubMed ID: 24824370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]