These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 29289186)
1. Picosecond-precision multichannel autonomous time and frequency counter. Szplet R; Kwiatkowski P; Różyc K; Jachna Z; Sondej T Rev Sci Instrum; 2017 Dec; 88(12):125101. PubMed ID: 29289186 [TBL] [Abstract][Full Text] [Related]
2. A 7.5 ps single-shot precision integrated time counter with segmented delay line. Klepacki K; Szplet R; Pelka R Rev Sci Instrum; 2014 Mar; 85(3):034703. PubMed ID: 24689608 [TBL] [Abstract][Full Text] [Related]
3. High-precision synchronization detection method for bistatic radar. Du B; Feng D; Sun X Rev Sci Instrum; 2019 Mar; 90(3):034705. PubMed ID: 30927773 [TBL] [Abstract][Full Text] [Related]
4. Note: Precise phase and frequency comparator based on direct phase-time measurements. Prochazka I; Panek P; Kodet J Rev Sci Instrum; 2014 Dec; 85(12):126110. PubMed ID: 25554346 [TBL] [Abstract][Full Text] [Related]
5. 8-Channel acquisition system for Time-Correlated Single-Photon Counting. Antonioli S; Miari L; Cuccato A; Crotti M; Rech I; Ghioni M Rev Sci Instrum; 2013 Jun; 84(6):064705. PubMed ID: 23822364 [TBL] [Abstract][Full Text] [Related]
6. A scalable, fast, and multichannel arbitrary waveform generator. Baig MT; Johanning M; Wiese A; Heidbrink S; Ziolkowski M; Wunderlich C Rev Sci Instrum; 2013 Dec; 84(12):124701. PubMed ID: 24387448 [TBL] [Abstract][Full Text] [Related]
7. Ultra storage-efficient time digitizer for pseudorandom single photon counter implemented on a field-programmable gate array. Haiting Tian ; Fernando S; Hock Wei Soon ; Zhang Qiang ; Chunxi Zhang ; Yajun Ha ; Nanguang Chen IEEE Trans Biomed Circuits Syst; 2010 Feb; 4(1):1-10. PubMed ID: 23853304 [TBL] [Abstract][Full Text] [Related]
8. A field programmable gated array-based method for performing high-precise instantaneous burst carrier frequency measurement. Zhang P; Wang H; Li L; Guo L; Wang P Rev Sci Instrum; 2014 Jun; 85(6):065112. PubMed ID: 24985857 [TBL] [Abstract][Full Text] [Related]
9. Precise frequency synchronization detection method based on the group quantization stepping law. Du B; Deng R; Sun X PLoS One; 2019; 14(2):e0211478. PubMed ID: 30716125 [TBL] [Abstract][Full Text] [Related]
10. Simple-design ultra-low phase noise microwave frequency synthesizers for high-performing Cs and Rb vapor-cell atomic clocks. François B; Calosso CE; Abdel Hafiz M; Micalizio S; Boudot R Rev Sci Instrum; 2015 Sep; 86(9):094707. PubMed ID: 26429467 [TBL] [Abstract][Full Text] [Related]
11. Note: A high-frequency signal generator based on direct digital synthesizer and field-programmable gate array. Du Y; Li W; Ge Y; Li H; Deng K; Lu Z Rev Sci Instrum; 2017 Sep; 88(9):096103. PubMed ID: 28964206 [TBL] [Abstract][Full Text] [Related]
12. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise. Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528 [TBL] [Abstract][Full Text] [Related]
13. High-precision frequency measurement for microresonant sensors based on improved modified multi-phase clock method. Li D; Zhao Q; Cui J Rev Sci Instrum; 2021 Jan; 92(1):015004. PubMed ID: 33514241 [TBL] [Abstract][Full Text] [Related]
14. Implementation of field-programmable Gate array-based clock synchronization in the fiber channel communication system. Xu H; Wang G; Guo L; Zhao Y; Jiang D; Lian K Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38436452 [TBL] [Abstract][Full Text] [Related]
15. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability. Panek P; Prochazka I Rev Sci Instrum; 2007 Sep; 78(9):094701. PubMed ID: 17902964 [TBL] [Abstract][Full Text] [Related]
16. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law. Du B; Dong S; Wang Y; Guo S; Cao L; Zhou W; Zuo Y; Liu D IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2237-43. PubMed ID: 24158281 [TBL] [Abstract][Full Text] [Related]
17. A high-precision and fast-sampling frequency measurement method based on FPGA carry chain for airborne optically pumped cesium magnetometer. Dong H; Hu S; Ge J; Liu H; Luo W; Yuan Z; Zhu J; Zhang H Rev Sci Instrum; 2018 Jul; 89(7):075001. PubMed ID: 30068136 [TBL] [Abstract][Full Text] [Related]
18. A high resolution time-to-digital-convertor based on a carry-chain and DSP48E1 adders in a 28-nm field-programmable-gate-array. Qin X; Zhu MD; Zhang WZ; Lin YH; Rui Y; Rong X; Du J Rev Sci Instrum; 2020 Feb; 91(2):024708. PubMed ID: 32113441 [TBL] [Abstract][Full Text] [Related]
19. Phase Noise and Frequency Stability of the Red-Pitaya Internal PLL. Cardenas Olaya AC; Calosso CE; Friedt JM; Micalizio S; Rubiola E IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):412-416. PubMed ID: 30507502 [TBL] [Abstract][Full Text] [Related]
20. Frequency Stability Measurement of Cryogenic Sapphire Oscillators With a Multichannel Tracking DDS and the Two-Sample Covariance. Calosso CE; Vernotte F; Giordano V; Fluhr C; Dubois B; Rubiola E IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):616-623. PubMed ID: 30273148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]