These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29289307)

  • 21. T-shirt ink for one-step screen-printing of hydrophobic barriers for 2D- and 3D-microfluidic paper-based analytical devices.
    Sitanurak J; Fukana N; Wongpakdee T; Thepchuay Y; Ratanawimarnwong N; Amornsakchai T; Nacapricha D
    Talanta; 2019 Dec; 205():120113. PubMed ID: 31450420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of Spotty Deposits on Fine Paper and Investigation of Key Factors Affecting Alkyl Ketene Dimer Spot Formation.
    Lee KH; Youn HJ; Lee HL
    ACS Omega; 2020 Jun; 5(25):15529-15536. PubMed ID: 32637828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Durable Hydrophobic/Superhydrophobic Wood Using an Alkyl Ketene Dimer by a Simple and Feasible Method.
    Cao H; Guo X; Zhou Y; Yan Y; Sun W
    ACS Omega; 2022 May; 7(21):17921-17928. PubMed ID: 35664597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.
    Jarujamrus P; Meelapsom R; Pencharee S; Obma A; Amatatongchai M; Ditcharoen N; Chairam S; Tamuang S
    Anal Sci; 2018; 34(1):75-81. PubMed ID: 29321463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterned fluoropolymer barriers for containment of organic solvents within paper-based microfluidic devices.
    Chen B; Kwong P; Gupta M
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12701-7. PubMed ID: 24283374
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of surfactants on wetting of super-hydrophobic surfaces.
    Mohammadi R; Wassink J; Amirfazli A
    Langmuir; 2004 Oct; 20(22):9657-62. PubMed ID: 15491199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput rapid-prototyping of low-cost paper-based microfluidics.
    Ghaderinezhad F; Amin R; Temirel M; Yenilmez B; Wentworth A; Tasoglu S
    Sci Rep; 2017 Jun; 7(1):3553. PubMed ID: 28620167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach.
    Amin R; Ghaderinezhad F; Bridge C; Temirel M; Jones S; Toloueinia P; Tasoglu S
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32599882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A waterproof cellulose nanofibril sheet prepared by the deposition of an alkyl ketene dimer on a controlled porous structure.
    Oh Y; Park SY; Yook S; Shin H; Lee HL; Youn HJ
    Cellulose (Lond); 2022; 29(12):6645-6657. PubMed ID: 35789830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Easily Fabricated Microfluidic Devices Using Permanent Marker Inks for Enzyme Assays.
    Gallibu C; Gallibu C; Avoundjian A; Gomez FA
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of superhydrophobic wetting state on corrosion protection--the AKD example.
    Ejenstam L; Ovaskainen L; Rodriguez-Meizoso I; Wågberg L; Pan J; Swerin A; Claesson PM
    J Colloid Interface Sci; 2013 Dec; 412():56-64. PubMed ID: 24144374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer.
    Fedorov PP; Luginina AA; Kuznetsov SV; Voronov VV; Yapryntsev AD; Lyapin AA; Pynenkov AA; Nishchev KN; Chernova EV; Petukhov DI; Kuryakov VN; Gainutdinov RV; Ivanov VK
    Carbohydr Polym; 2020 Dec; 250():116866. PubMed ID: 33049816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Easy and rapid pen-on-paper protocol for fabrication of paper analytical devices using inexpensive acrylate-based plastic welding repair kit.
    Aguilar LG; Petroni JM; Ferreira VS; Lucca BG
    Talanta; 2020 Nov; 219():121246. PubMed ID: 32887137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of paper-based microfluidic sensors by printing.
    Li X; Tian J; Garnier G; Shen W
    Colloids Surf B Biointerfaces; 2010 Apr; 76(2):564-70. PubMed ID: 20097546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface.
    Gao B; Liu H; Gu Z
    Langmuir; 2014 Dec; 30(50):15041-6. PubMed ID: 25474203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diatomite Modified with an Alkyl Ketene Dimer for Hydrophobicity of Cellulosic Paper.
    Chen Z; Fan G; He X; Xu L; Zhang X; He Z; Zhang L
    ACS Omega; 2022 Jun; 7(23):20129-20136. PubMed ID: 35721895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate determination of melting Point of industrial grade alkyl ketene dimer wax by a simple and automated headspace gas chromatographic technique.
    Yan N; Chai XS
    J Chromatogr A; 2019 Jan; 1585():192-195. PubMed ID: 30482432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the analytical performance and versatility of paper spray mass spectrometry via paper microfluidics.
    Murray I; Walker G; Bereman MS
    Analyst; 2016 Jun; 141(13):4065-73. PubMed ID: 27138343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices.
    Rahbar M; Nesterenko PN; Paull B; Macka M
    Anal Chim Acta; 2019 Jan; 1047():115-123. PubMed ID: 30567641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.