BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29289318)

  • 1. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis.
    Cushing K; Undvall E; Ceder Y; Lilja H; Laurell T
    Anal Chim Acta; 2018 Feb; 1000():256-264. PubMed ID: 29289318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Step Acoustophoresis Separation of Live Tumor Cells from Whole Blood.
    Undvall Anand E; Magnusson C; Lenshof A; Ceder Y; Lilja H; Laurell T
    Anal Chem; 2021 Dec; 93(51):17076-17085. PubMed ID: 34913344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis.
    Augustsson P; Magnusson C; Nordin M; Lilja H; Laurell T
    Anal Chem; 2012 Sep; 84(18):7954-62. PubMed ID: 22897670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastomeric microparticles for acoustic mediated bioseparations.
    Johnson LM; Gao L; Shields IV CW; Smith M; Efimenko K; Cushing K; Genzer J; López GP
    J Nanobiotechnology; 2013 Jun; 11():22. PubMed ID: 23809852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic impedance-based size-independent isolation of circulating tumour cells from blood using acoustophoresis.
    Karthick S; Pradeep PN; Kanchana P; Sen AK
    Lab Chip; 2018 Dec; 18(24):3802-3813. PubMed ID: 30402651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis.
    Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T
    Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells.
    Burguillos MA; Magnusson C; Nordin M; Lenshof A; Augustsson P; Hansson MJ; Elmér E; Lilja H; Brundin P; Laurell T; Deierborg T
    PLoS One; 2013; 8(5):e64233. PubMed ID: 23724038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic Enrichment of Heterogeneous Circulating Tumor Cells and Clusters from Metastatic Prostate Cancer Patients.
    Magnusson C; Augustsson P; Undvall Anand E; Lenshof A; Josefsson A; Welén K; Bjartell A; Ceder Y; Lilja H; Laurell T
    Anal Chem; 2024 May; 96(18):6914-6921. PubMed ID: 38655666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells.
    Antfolk M; Antfolk C; Lilja H; Laurell T; Augustsson P
    Lab Chip; 2015 May; 15(9):2102-9. PubMed ID: 25824937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastomeric negative acoustic contrast particles for capture, acoustophoretic transport, and confinement of cells in microfluidic systems.
    Shields CW; Johnson LM; Gao L; López GP
    Langmuir; 2014 Apr; 30(14):3923-7. PubMed ID: 24673242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroBubble activated acoustic cell sorting.
    Faridi MA; Ramachandraiah H; Iranmanesh I; Grishenkov D; Wiklund M; Russom A
    Biomed Microdevices; 2017 Jun; 19(2):23. PubMed ID: 28374278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems.
    Lenshof A; Magnusson C; Laurell T
    Lab Chip; 2012 Apr; 12(7):1210-23. PubMed ID: 22362021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustophoretic sorting of viable mammalian cells in a microfluidic device.
    Yang AH; Soh HT
    Anal Chem; 2012 Dec; 84(24):10756-62. PubMed ID: 23157478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free separation of leukocyte subpopulations using high throughput multiplex acoustophoresis.
    Urbansky A; Olm F; Scheding S; Laurell T; Lenshof A
    Lab Chip; 2019 Apr; 19(8):1406-1416. PubMed ID: 30869100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastomeric negative acoustic contrast particles for affinity capture assays.
    Cushing KW; Piyasena ME; Carroll NJ; Maestas GC; López BA; Edwards BS; Graves SW; López GP
    Anal Chem; 2013 Feb; 85(4):2208-15. PubMed ID: 23331264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free separation of neuroblastoma patient-derived xenograft (PDX) cells from hematopoietic progenitor cell products by acoustophoresis.
    Olm F; Panse L; Dykes JH; Bexell D; Laurell T; Scheding S
    Stem Cell Res Ther; 2021 Oct; 12(1):542. PubMed ID: 34654486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of 300 and 100 nm Particles in Fabry-Perot Acoustofluidic Resonators.
    Sehgal P; Kirby BJ
    Anal Chem; 2017 Nov; 89(22):12192-12200. PubMed ID: 29039191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.