These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29289606)

  • 1. Determining whether a class of random graphs is consistent with an observed contact network.
    Nath M; Ren Y; Khorramzadeh Y; Eubank S
    J Theor Biol; 2018 Mar; 440():121-132. PubMed ID: 29289606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of contact network structure on epidemic transmission trees: implications for data required to estimate network structure.
    Carnegie NB
    Stat Med; 2018 Jan; 37(2):236-248. PubMed ID: 28192859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Information content of contact-pattern representations and predictability of epidemic outbreaks.
    Holme P
    Sci Rep; 2015 Sep; 5():14462. PubMed ID: 26403504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of including dynamic social networks when modeling epidemics of airborne infections: does increasing complexity increase accuracy?
    Blower S; Go MH
    BMC Med; 2011 Jul; 9():88. PubMed ID: 21771292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contact tracing.
    Kiss IZ; Green DM; Kao RR
    J R Soc Interface; 2008 Jul; 5(24):791-9. PubMed ID: 18055417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. sispread: A software to simulate infectious diseases spreading on contact networks.
    Alvarez FP; Crépey P; Barthélemy M; Valleron AJ
    Methods Inf Med; 2007; 46(1):19-26. PubMed ID: 17224976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees.
    Stehlé J; Voirin N; Barrat A; Cattuto C; Colizza V; Isella L; Régis C; Pinton JF; Khanafer N; Van den Broeck W; Vanhems P
    BMC Med; 2011 Jul; 9():87. PubMed ID: 21771290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Networks, epidemics and vaccination through contact tracing.
    Shaban N; Andersson M; Svensson A; Britton T
    Math Biosci; 2008 Nov; 216(1):1-8. PubMed ID: 18638493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling contact tracing in outbreaks with application to Ebola.
    Browne C; Gulbudak H; Webb G
    J Theor Biol; 2015 Nov; 384():33-49. PubMed ID: 26297316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infectious disease control using contact tracing in random and scale-free networks.
    Kiss IZ; Green DM; Kao RR
    J R Soc Interface; 2006 Feb; 3(6):55-62. PubMed ID: 16849217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On analytical approaches to epidemics on networks.
    Trapman P
    Theor Popul Biol; 2007 Mar; 71(2):160-73. PubMed ID: 17222879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices.
    Machens A; Gesualdo F; Rizzo C; Tozzi AE; Barrat A; Cattuto C
    BMC Infect Dis; 2013 Apr; 13():185. PubMed ID: 23618005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact tracing in stochastic and deterministic epidemic models.
    Müller J; Kretzschmar M; Dietz K
    Math Biosci; 2000 Mar; 164(1):39-64. PubMed ID: 10704637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis.
    Firestone SM; Ward MP; Christley RM; Dhand NK
    Prev Vet Med; 2011 Dec; 102(3):185-95. PubMed ID: 21852007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex social contagion makes networks more vulnerable to disease outbreaks.
    Campbell E; Salathé M
    Sci Rep; 2013; 3():1905. PubMed ID: 23712758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting epidemic risk from past temporal contact data.
    Valdano E; Poletto C; Giovannini A; Palma D; Savini L; Colizza V
    PLoS Comput Biol; 2015 Mar; 11(3):e1004152. PubMed ID: 25763816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic Wave Dynamics Attributable to Urban Community Structure: A Theoretical Characterization of Disease Transmission in a Large Network.
    Hoen AG; Hladish TJ; Eggo RM; Lenczner M; Brownstein JS; Meyers LA
    J Med Internet Res; 2015 Jul; 17(7):e169. PubMed ID: 26156032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time growth rate for general stochastic SIR epidemics on unclustered networks.
    Pellis L; Spencer SE; House T
    Math Biosci; 2015 Jul; 265():65-81. PubMed ID: 25916891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemic prediction and control in weighted networks.
    Eames KT; Read JM; Edmunds WJ
    Epidemics; 2009 Mar; 1(1):70-6. PubMed ID: 21352752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution epidemic simulation using within-host infection and contact data.
    Nguyen VK; Mikolajczyk R; Hernandez-Vargas EA
    BMC Public Health; 2018 Jul; 18(1):886. PubMed ID: 30016958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.