BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 29289679)

  • 1. Target height affects the symmetry of the postural adjustments after (but not prior) the onset of reaching movements in upright standing.
    Oliveira DSV; Nardini AG; Alouche SR; Garbus RBSC; Freitas SMSF
    Neurosci Lett; 2018 Feb; 666():181-185. PubMed ID: 29289679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postural adjustments for online corrections of arm movements in standing humans.
    Leonard JA; Gritsenko V; Ouckama R; Stapley PJ
    J Neurophysiol; 2011 May; 105(5):2375-88. PubMed ID: 21346210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of target uncertainty on reaching movements while standing in stroke.
    Lima CA; Alouche SR; Baldan AMS; de Freitas PB; Freitas SMSF
    Hum Mov Sci; 2019 Apr; 64():283-295. PubMed ID: 30825762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postural adjustments to support surface perturbations during reaching depend upon body-target reference frame.
    Hilderley AJ; Leonard JA; Green A; Ouckama R; Stapley PJ
    Exp Brain Res; 2015 Jan; 233(1):303-16. PubMed ID: 25294498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaching to multiple targets when standing: the spatial organization of feedforward postural adjustments.
    Leonard JA; Brown RH; Stapley PJ
    J Neurophysiol; 2009 Apr; 101(4):2120-33. PubMed ID: 19211658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postural adjustments in catching: on the interplay between segment stabilization and equilibrium control.
    Tijtgat P; Vanrenterghem J; Bennett SJ; De Clercq D; Savelsbergh GJ; Lenoir M
    Motor Control; 2013 Jan; 17(1):48-61. PubMed ID: 23154204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility of anticipatory postural adjustments revealed by self-paced and reaction-time arm movements.
    Benvenuti F; Stanhope SJ; Thomas SL; Panzer VP; Hallett M
    Brain Res; 1997 Jun; 761(1):59-70. PubMed ID: 9247066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Practice-related improvements in postural control during rapid arm movement in older adults: a preliminary study.
    Kubicki A; Petrement G; Bonnetblanc F; Ballay Y; Mourey F
    J Gerontol A Biol Sci Med Sci; 2012 Feb; 67(2):196-203. PubMed ID: 21948599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of muscle coactivation in adaptation of standing posture during arm reaching.
    Pienciak-Siewert A; Horan DP; Ahmed AA
    J Neurophysiol; 2020 Feb; 123(2):529-547. PubMed ID: 31851559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age differences in the control of postural stability during reaching tasks.
    Huang MH; Brown SH
    Gait Posture; 2013 Sep; 38(4):837-42. PubMed ID: 23659902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination between posture and movement: interaction between postural and accuracy constraints.
    Berrigan F; Simoneau M; Martin O; Teasdale N
    Exp Brain Res; 2006 Apr; 170(2):255-64. PubMed ID: 16328274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms.
    Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H
    Brain Res Bull; 2005 Sep; 67(1-2):30-9. PubMed ID: 16140160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of asymmetry of posture on anticipatory postural adjustments.
    Aruin AS
    Neurosci Lett; 2006 Jun; 401(1-2):150-3. PubMed ID: 16569481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postural adjustments and reaching in 4- and 6-month-old infants: an EMG and kinematical study.
    de Graaf-Peters VB; Bakker H; van Eykern LA; Otten B; Hadders-Algra M
    Exp Brain Res; 2007 Aug; 181(4):647-56. PubMed ID: 17505820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The degree of postural automaticity influences the prime movement and the anticipatory postural adjustments during standing in healthy young individuals.
    Sakamoto S; Iguchi M
    Hum Mov Sci; 2018 Aug; 60():131-138. PubMed ID: 29890344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural adjustments accompanying fast pointing movements in standing, sitting and lying adults.
    van der Fits IB; Klip AW; van Eykern LA; Hadders-Algra M
    Exp Brain Res; 1998 May; 120(2):202-16. PubMed ID: 9629962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of foreperiod duration on anticipatory postural adjustments: determination of an optimal preparation in standing and sitting for a raising arm movement.
    Cuisinier R; Olivier I; Nougier V
    Brain Res Bull; 2005 Jul; 66(2):163-70. PubMed ID: 15982534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.