These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 29289731)

  • 1. Fabrication of two-dimensional (2D) ordered microsphere aligned by supramolecular self-assembly of Formyl-azobenzene and dipeptide.
    Ma H; Li S; Wei Y; Jiang L; Li J
    J Colloid Interface Sci; 2018 Mar; 514():491-495. PubMed ID: 29289731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface self-assembly of N-fluorenyl-9-methoxycarbonyl diphenylalanine on silica wafer.
    Liu Y; Xu XD; Chen JX; Cheng H; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):192-7. PubMed ID: 21612897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular organization and heterochiral recognition in Langmuir monolayers of chiral azobenzene surfactants.
    Pulido-Companys A; Albalat R; Garcia-Amorós J; Velasco D; Ignés-Mullol J
    Langmuir; 2013 Aug; 29(31):9635-42. PubMed ID: 23837787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling morphology of peptide-based soft structures by covalent modifications.
    Gour N; Barman AK; Verma S
    J Pept Sci; 2012 Jun; 18(6):405-12. PubMed ID: 22535547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.
    Martin AD; Wojciechowski JP; Warren H; in het Panhuis M; Thordarson P
    Soft Matter; 2016 Mar; 12(10):2700-7. PubMed ID: 26860207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly.
    Wang J; Liu K; Yan L; Wang A; Bai S; Yan X
    ACS Nano; 2016 Feb; 10(2):2138-43. PubMed ID: 26756339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of supramolecular self-assembled microfibers with fluorescent properties through a modified ionic self-assembly (ISA) strategy.
    Zhao M; Zhao Y; Zheng L; Dai C
    Chemistry; 2013 Jan; 19(3):1076-81. PubMed ID: 23197332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid peptide-PNA monomers as building blocks for the fabrication of supramolecular aggregates.
    Cimmino L; Diaferia C; Rosa M; Morelli G; Rosa E; Accardo A
    J Pept Sci; 2024 Jul; 30(7):e3573. PubMed ID: 38471735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.
    Reddy SM; Shanmugam G
    Chemphyschem; 2016 Sep; 17(18):2897-907. PubMed ID: 27309737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit.
    Mason TO; Michaels TCT; Levin A; Dobson CM; Gazit E; Knowles TPJ; Buell AK
    J Am Chem Soc; 2017 Nov; 139(45):16134-16142. PubMed ID: 28994295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus-responsive azobenzene supramolecules: fibers, gels, and hollow spheres.
    Lee S; Oh S; Lee J; Malpani Y; Jung YS; Kang B; Lee JY; Ozasa K; Isoshima T; Lee SY; Hara M; Hashizume D; Kim JM
    Langmuir; 2013 May; 29(19):5869-77. PubMed ID: 23597134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halogen-Bond-Mediated Self-Assembly of Polymer-Resorcinarene Complexes.
    Välimäki S; Gustavsson L; Beyeh NK; Linko V; Kostiainen MA
    Macromol Rapid Commun; 2019 Jul; 40(14):e1900158. PubMed ID: 31111995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating.
    Cheng M; Shi F; Li J; Lin Z; Jiang C; Xiao M; Zhang L; Yang W; Nishi T
    Adv Mater; 2014 May; 26(19):3009-13. PubMed ID: 24453055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diphenylalanine Peptide Nanotube Energy Harvesters.
    Lee JH; Heo K; Schulz-Schönhagen K; Lee JH; Desai MS; Jin HE; Lee SW
    ACS Nano; 2018 Aug; 12(8):8138-8144. PubMed ID: 30071165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular self-assembly of π-conjugated hydrocarbons via 2D cooperative CH/π interaction.
    Li Q; Han C; Horton SR; Fuentes-Cabrera M; Sumpter BG; Lu W; Bernholc J; Maksymovych P; Pan M
    ACS Nano; 2012 Jan; 6(1):566-72. PubMed ID: 22168531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.