BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29289743)

  • 1. Highly selective and sensitive determination of dopamine in biological samples via tuning the particle size of label-free gold nanoparticles.
    Mohseni N; Bahram M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():451-457. PubMed ID: 29289743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold-nanoparticle-based colorimetric array for detection of dopamine in urine and serum.
    Leng Y; Xie K; Ye L; Li G; Lu Z; He J
    Talanta; 2015 Jul; 139():89-95. PubMed ID: 25882412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity.
    Feng JJ; Guo H; Li YF; Wang YH; Chen WY; Wang AJ
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1226-31. PubMed ID: 23387928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection.
    Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P
    Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid determination of dopamine in human plasma using a gold nanoparticle-based dual-mode sensing system.
    Zhang Y; Qi S; Liu Z; Shi Y; Yue W; Yi C
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():207-13. PubMed ID: 26838842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A label-free aptasensor based on polyethyleneimine wrapped carbon nanotubes in situ formed gold nanoparticles as signal probe for highly sensitive detection of dopamine.
    Azadbakht A; Roushani M; Abbasi AR; Menati S; Derikvand Z
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():585-593. PubMed ID: 27524058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel core etching technique of gold nanoparticles for colorimetric dopamine detection.
    Lee HC; Chen TH; Tseng WL; Lin CH
    Analyst; 2012 Nov; 137(22):5352-7. PubMed ID: 23016153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles.
    Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD
    Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Reaction-Based Multimodal Assay for Dopamine with High Sensitivity and Selectivity Using Functionalized Gold Nanoparticles.
    Zeng Z; Cui B; Wang Y; Sun C; Zhao X; Cui H
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16518-24. PubMed ID: 26171655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle-based detection of dopamine based on fluorescence resonance energy transfer between a 4-(4-dialkylaminostyryl)pyridinium derived fluorophore and citrate-capped gold nanoparticles.
    Peng J; Zhou N; Zhong Y; Su Y; Zhao L; Chang YT
    Mikrochim Acta; 2019 Aug; 186(9):618. PubMed ID: 31410617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-enzymatic sensing of dopamine by localized surface plasmon resonance using carbon dots-functionalized gold nanoparticles.
    Amiri M; Dadfarnia S; Haji Shabani AM; Sadjadi S
    J Pharm Biomed Anal; 2019 Aug; 172():223-229. PubMed ID: 31060035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes.
    Liu L; Li S; Liu L; Deng D; Xia N
    Analyst; 2012 Aug; 137(16):3794-9. PubMed ID: 22763413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding recognition and colorimetric detection of isoprenaline using 2-amino-5-mercapto-1,3,4-thiadiazol functionalized gold nanoparticles.
    Khezri S; Bahram M; Samadi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():522-527. PubMed ID: 28863401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of gold nanoparticle-based real-time colorimetric assay of dipeptidyl peptidase IV activity.
    Aldewachi HS; Woodroofe N; Turega S; Gardiner PHE
    Talanta; 2017 Jul; 169():13-19. PubMed ID: 28411801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of extremely stable dual functionalized gold nanoparticles for effective colorimetric detection of clenbuterol and ractopamine in human urine samples.
    Simon T; Shellaiah M; Steffi P; Sun KW; Ko FH
    Anal Chim Acta; 2018 Sep; 1023():96-104. PubMed ID: 29754612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive colorimetric detection of cyromazine in cucumber samples by using label-free gold nanoparticles and polythymine.
    Liu J; Bai W; Zhu C; Yan M; Yang S; Chen A
    Analyst; 2015 May; 140(9):3064-9. PubMed ID: 25741673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligands dissociation induced gold nanoparticles aggregation for colorimetric Al
    Luo X; Xie X; Meng Y; Sun T; Ding J; Zhou W
    Anal Chim Acta; 2019 Dec; 1087():76-85. PubMed ID: 31585569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective and sensitive detection of Staphylococcus aureus with gold nanoparticle-based core-shell nano biosensor.
    Shahbazi R; Salouti M; Amini B; Jalilvand A; Naderlou E; Amini A; Shams A
    Mol Cell Probes; 2018 Oct; 41():8-13. PubMed ID: 30053513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A colorimetric/electrochemical sensor based on coral-like CuCo
    Yi H; Ran J; Tan Y; Wang Z; Liu B
    Anal Bioanal Chem; 2024 Jan; 416(1):265-276. PubMed ID: 37957328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.