These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 29289996)
1. Vineyard microclimate and yield under different plastic covers. Holcman E; Sentelhas PC; Conceição MAF; Couto HTZ Int J Biometeorol; 2018 Jun; 62(6):925-937. PubMed ID: 29289996 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the phenolic composition and yield of 'BRS Vitoria' seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS. Colombo RC; Roberto SR; Nixdorf SL; Pérez-Navarro J; Gómez-Alonso S; Mena-Morales A; García-Romero E; Azeredo Gonçalves LS; da Cruz MA; de Carvalho DU; Madeira TB; Watanabe LS; de Souza RT; Hermosín-Gutiérrez I Food Res Int; 2020 Apr; 130():108955. PubMed ID: 32156395 [TBL] [Abstract][Full Text] [Related]
3. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard. Greer DH; Weedon MM Plant Physiol Biochem; 2012 May; 54():59-69. PubMed ID: 22381656 [TBL] [Abstract][Full Text] [Related]
4. Influence of Leaf Wetness Duration and Temperature on Infection of Grape Leaves by Carisse O; Levasseur A; Provost C Plant Dis; 2020 Nov; 104(11):2817-2822. PubMed ID: 32986537 [TBL] [Abstract][Full Text] [Related]
5. Within-Vineyard, Within-Vine, and Within-Bunch Variability of the Rotundone Concentration in Berries of Vitis vinifera L. cv. Shiraz. Zhang P; Barlow S; Krstic M; Herderich M; Fuentes S; Howell K J Agric Food Chem; 2015 May; 63(17):4276-83. PubMed ID: 25891266 [TBL] [Abstract][Full Text] [Related]
6. Use of metabolic profiling to study grape skin polyphenol behavior as a result of canopy microclimate manipulation in a 'Pinot noir' vineyard. Sternad Lemut M; Sivilotti P; Franceschi P; Wehrens R; Vrhovsek U J Agric Food Chem; 2013 Sep; 61(37):8976-86. PubMed ID: 23952343 [TBL] [Abstract][Full Text] [Related]
7. Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate. Asproudi A; Petrozziello M; Cavalletto S; Guidoni S Food Chem; 2016 Nov; 211():947-56. PubMed ID: 27283716 [TBL] [Abstract][Full Text] [Related]
8. Mitigating Heat Wave and Exposure Damage to "Cabernet Sauvignon" Wine Grape With Partial Shading Under Two Irrigation Amounts. Martínez-Lüscher J; Chen CCL; Brillante L; Kurtural SK Front Plant Sci; 2020; 11():579192. PubMed ID: 33240297 [TBL] [Abstract][Full Text] [Related]
9. Agroecological management of a soil-dwelling orthopteran pest in vineyards. Nboyine JA; Boyer S; Saville DJ; Wratten SD Insect Sci; 2018 Jun; 25(3):475-486. PubMed ID: 27891761 [TBL] [Abstract][Full Text] [Related]
10. Penman-Monteith approaches for estimating crop evapotranspiration in screenhouses--a case study with table-grape. Pirkner M; Dicken U; Tanny J Int J Biometeorol; 2014 Jul; 58(5):725-37. PubMed ID: 23572271 [TBL] [Abstract][Full Text] [Related]
11. Apple production and quality when cultivated under anti-hail cover in Southern Brazil. Bosco LC; Bergamaschi H; Cardoso LS; de Paula VA; Marodin GA; Nachtigall GR Int J Biometeorol; 2015 Jul; 59(7):773-82. PubMed ID: 25179529 [TBL] [Abstract][Full Text] [Related]
12. Changes in Cabernet Sauvignon yield and berry quality as affected by variability in weather conditions in the last two decades in Lebanon. Ghantous G; Popov K; El Sebaaly Z; Sassine YN Sci Rep; 2024 Mar; 14(1):6992. PubMed ID: 38523138 [TBL] [Abstract][Full Text] [Related]
13. Canopy architecture and fruit microclimate, not ripening-related phytohormones, control phenylpropanoid accumulation in response to early leaf removal in 'Merlot' (Vitis vinifera L.) grapevines. VanderWeide J; Tombesi S; Castellarin SD; Sabbatini P Plant Physiol Biochem; 2020 Dec; 157():291-302. PubMed ID: 33157421 [TBL] [Abstract][Full Text] [Related]
14. Comparison of air temperature measured in a vineyard canopy and at a standard weather station. Peña Quiñones AJ; Hoogenboom G; Salazar Gutiérrez MR; Stöckle C; Keller M PLoS One; 2020; 15(6):e0234436. PubMed ID: 32525911 [TBL] [Abstract][Full Text] [Related]
15. Microclimate influence on mineral and metabolic profiles of grape berries. Pereira GE; Gaudillere JP; Pieri P; Hilbert G; Maucourt M; Deborde C; Moing A; Rolin D J Agric Food Chem; 2006 Sep; 54(18):6765-75. PubMed ID: 16939338 [TBL] [Abstract][Full Text] [Related]
16. Eriophyoid mite damage in Vitis vinifera (grapevine) in Australia: Calepitrimerus vitis and Colomerus vitis (Acari: Eriophyidae) as the common cause of the widespread 'Restricted Spring Growth' syndrome. Bernard MB; Horne PA; Hoffmann AA Exp Appl Acarol; 2005; 35(1-2):83-109. PubMed ID: 15777003 [TBL] [Abstract][Full Text] [Related]
17. Effects of vine or bunch shading on the glycosylated flavor precursors in grapes of Vitis vinifera L. Cv. syrah. Bureau SM; Baumes RL; Razungles AJ J Agric Food Chem; 2000 Apr; 48(4):1290-7. PubMed ID: 10775388 [TBL] [Abstract][Full Text] [Related]
18. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Karvatte N; Klosowski ES; de Almeida RG; Mesquita EE; de Oliveira CC; Alves FV Int J Biometeorol; 2016 Dec; 60(12):1933-1941. PubMed ID: 27178201 [TBL] [Abstract][Full Text] [Related]
19. Animal thermal comfort indexes in silvopastoral systems with different tree arrangements. Pezzopane JRM; Nicodemo MLF; Bosi C; Garcia AR; Lulu J J Therm Biol; 2019 Jan; 79():103-111. PubMed ID: 30612670 [TBL] [Abstract][Full Text] [Related]
20. Climatic records and within field data on yield and harvest quality over a whole vineyard estate. Gras JP; Brunel G; Ducanchez A; Crestey T; Tisseyre B Data Brief; 2023 Oct; 50():109579. PubMed ID: 37771711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]