These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Wu J; Handique U; Graham J; Johnson E Phytopathology; 2020 Aug; 110(8):1437-1448. PubMed ID: 32228377 [TBL] [Abstract][Full Text] [Related]
4. QTLs and eQTLs mapping related to citrandarins' resistance to citrus gummosis disease. Lima RPM; Curtolo M; Merfa MV; Cristofani-Yaly M; Machado MA BMC Genomics; 2018 Jul; 19(1):516. PubMed ID: 29969985 [TBL] [Abstract][Full Text] [Related]
5. Histological Comparison of Fibrous Root Infection of Disease-Tolerant and Susceptible Citrus Hosts by Phytophthora nicotianae and P. palmivora. Widmer TL; Graham JH; Mitchell DJ Phytopathology; 1998 May; 88(5):389-95. PubMed ID: 18944916 [TBL] [Abstract][Full Text] [Related]
6. RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response. Rodrigues CM; de Souza AA; Takita MA; Kishi LT; Machado MA BMC Genomics; 2013 Oct; 14():676. PubMed ID: 24090429 [TBL] [Abstract][Full Text] [Related]
7. Differences in transcriptomic responses upon Phytophthora palmivora infection among cultivars reveal potential underlying resistant mechanisms in durian. Nawae W; Sangsrakru D; Yoocha T; Pinsupa S; Phetchawang P; Bua-Art S; Chusri O; Tangphatsornruang S; Pootakham W BMC Plant Biol; 2024 Oct; 24(1):878. PubMed ID: 39358741 [TBL] [Abstract][Full Text] [Related]
8. Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica. Boava LP; Cristofani-Yaly M; Mafra VS; Kubo K; Kishi LT; Takita MA; Ribeiro-Alves M; Machado MA BMC Genomics; 2011 Jan; 12():39. PubMed ID: 21241495 [TBL] [Abstract][Full Text] [Related]
9. Wide-ranging transcriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals HLB tolerance mechanisms. Curtolo M; de Souza Pacheco I; Boava LP; Takita MA; Granato LM; Galdeano DM; de Souza AA; Cristofani-Yaly M; Machado MA Sci Rep; 2020 Nov; 10(1):20865. PubMed ID: 33257732 [TBL] [Abstract][Full Text] [Related]
10. Rosellinia necatrix infection induces differential gene expression between tolerant and susceptible avocado rootstocks. Zumaquero A; Martínez-Ferri E; Matas AJ; Reeksting B; Olivier NA; Pliego-Alfaro F; Barceló A; van den Berg N; Pliego C PLoS One; 2019; 14(2):e0212359. PubMed ID: 30763398 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic profile of tobacco in response to Phytophthora nicotianae infection. Yang JK; Tong ZJ; Fang DH; Chen XJ; Zhang KQ; Xiao BG Sci Rep; 2017 Mar; 7(1):401. PubMed ID: 28341825 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional regulation of hormone signalling genes in black pepper in response to Phytophthora capsici. Mahadevan C; Shafi KM; Nagarathnam B; Sakuntala M; Sowdhamini R BMC Genomics; 2024 Sep; 25(1):910. PubMed ID: 39350031 [TBL] [Abstract][Full Text] [Related]
13. Resistant and susceptible cacao genotypes exhibit defense gene polymorphism and unique early responses to Phytophthora megakarya inoculation. Pokou DN; Fister AS; Winters N; Tahi M; Klotioloma C; Sebastian A; Marden JH; Maximova SN; Guiltinan MJ Plant Mol Biol; 2019 Mar; 99(4-5):499-516. PubMed ID: 30739243 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Meng H; Sun M; Jiang Z; Liu Y; Sun Y; Liu D; Jiang C; Ren M; Yuan G; Yu W; Feng Q; Yang A; Cheng L; Wang Y Sci Rep; 2021 Jan; 11(1):809. PubMed ID: 33436928 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene. Fu XZ; Liu JH Biomed Res Int; 2013; 2013():918136. PubMed ID: 23509803 [TBL] [Abstract][Full Text] [Related]
16. Temporal Occurrence and Niche Preferences of Phytophthora spp. Causing Brown Rot of Citrus in the Central Valley of California. Hao W; Miles TD; Martin FN; Browne GT; Förster H; Adaskaveg JE Phytopathology; 2018 Mar; 108(3):384-391. PubMed ID: 29053435 [TBL] [Abstract][Full Text] [Related]
17. Identification of putative TAL effector targets of the citrus canker pathogens shows functional convergence underlying disease development and defense response. Pereira AL; Carazzolle MF; Abe VY; de Oliveira ML; Domingues MN; Silva JC; Cernadas RA; Benedetti CE BMC Genomics; 2014 Feb; 15():157. PubMed ID: 24564253 [TBL] [Abstract][Full Text] [Related]
18. Differential regulation of defense-related proteins in soybean during compatible and incompatible interactions between Phytophthora sojae and soybean by comparative proteomic analysis. Jing M; Ma H; Li H; Guo B; Zhang X; Ye W; Wang H; Wang Q; Wang Y Plant Cell Rep; 2015 Jul; 34(7):1263-80. PubMed ID: 25906415 [TBL] [Abstract][Full Text] [Related]
19. Identification of QTLs associated with citrus resistance to Phytophthora gummosis. Siviero A; Cristofani M; Furtado EL; Garcia AA; Coelho AS; Machado MA J Appl Genet; 2006; 47(1):23-8. PubMed ID: 16424605 [TBL] [Abstract][Full Text] [Related]
20. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]