These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29290118)

  • 1. Imaging Channel Connectivity in Nafion Using Electrostatic Force Microscopy.
    Barnes AM; Buratto SK
    J Phys Chem B; 2018 Jan; 122(3):1289-1295. PubMed ID: 29290118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Ionic Domains on a Proton Exchange Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy.
    Son B; Park J; Kwon O
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Study of Charge Distribution Variations on Silica-Nafion Composite Membranes under Hydration Using an Approximation Model.
    Kwon O; Park J; Lee J
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Ionic Domain Evolution on a Nafion-Sulfonated Silica Composite Membrane Using a Numerical Approximation Model Based on Electrostatic Force Microscopy.
    Kwon O; Park J
    Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36145859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrast inversion in electrostatic force microscopy imaging of trapped charges: tip-sample distance and dielectric constant dependence.
    Riedel C; Alegría A; Arinero R; Colmenero J; Sáenz JJ
    Nanotechnology; 2011 Aug; 22(34):345702. PubMed ID: 21795775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of microscopic proton current flow distributions in fresh and aged Nafion membranes.
    Kwon O; Kang Y; Wu S; Zhu DM
    J Phys Chem B; 2010 Apr; 114(16):5365-70. PubMed ID: 20369807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells.
    Bussian DA; O'Dea JR; Metiu H; Buratto SK
    Nano Lett; 2007 Feb; 7(2):227-32. PubMed ID: 17256914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Understanding of Ionic Channel Network Variation in Nafion with Hydration Using Current Sensing Atomic Force Microscopy.
    Kwon O; Lee J; Son H; Park J
    Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductance mapping of proton exchange membranes by current sensing atomic force microscopy.
    Kang Y; Kwon O; Xie X; Zhu DM
    J Phys Chem B; 2009 Nov; 113(45):15040-6. PubMed ID: 19888766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy.
    Zhao M; Gu X; Lowther SE; Park C; Jean YC; Nguyen T
    Nanotechnology; 2010 Jun; 21(22):225702. PubMed ID: 20453284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced dielectric constant resolution of thin insulating films by electrostatic force microscopy.
    Castellano-Hernández E; Moreno-Llorena J; Sáenz JJ; Sacha GM
    J Phys Condens Matter; 2012 Apr; 24(15):155303. PubMed ID: 22442155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The jump-into-contact effect in biased AFM probes on dielectric films and its application to quantify the dielectric permittivity of thin layers.
    Revilla RI
    Nanotechnology; 2016 Jul; 27(26):265705. PubMed ID: 27199351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configuration changes of conducting channel network in Nafion membranes due to thermal annealing.
    Kwon O; Wu S; Zhu DM
    J Phys Chem B; 2010 Nov; 114(46):14989-94. PubMed ID: 21028767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method.
    Shen Y; Lee M; Lee W; Barnett DM; Pinsky PM; Prinz FB
    Nanotechnology; 2008 Jan; 19(3):035710. PubMed ID: 21817595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Humidity Dependent Surface Morphology and Proton Conduction in Multi-Acid Side Chain Membranes by Conductive Probe Atomic Force Microscopy.
    Economou NJ; Barnes AM; Wheat AJ; Schaberg MS; Hamrock SJ; Buratto SK
    J Phys Chem B; 2015 Nov; 119(44):14280-7. PubMed ID: 26439098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized Electrochemical Impedance Measurements on Nafion Membranes: Observation and Analysis of Spatially Diverse Proton Transport Using Atomic Force Microscopy.
    Wang X; Habte BT; Zhang S; Yang H; Zhao J; Jiang F; He Q
    Anal Chem; 2019 Sep; 91(18):11678-11686. PubMed ID: 31448899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of amplitude modulated electrostatic force microscopy for dielectric measurements in liquids at MHz frequencies.
    Gramse G; Edwards MA; Fumagalli L; Gomila G
    Nanotechnology; 2013 Oct; 24(41):415709. PubMed ID: 24061045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitive Measurements of SiO
    Lee H; Shin K; Moon W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34199213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements.
    Aleksandrova E; Hink S; Hiesgen R; Roduner E
    J Phys Condens Matter; 2011 Jun; 23(23):234109. PubMed ID: 21613704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the connectivity of hydrophilic domains in Nafion using electrochemical pore-directed nanolithography.
    Gargas DJ; Bussian DA; Buratto SK
    Nano Lett; 2005 Nov; 5(11):2184-7. PubMed ID: 16277450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.