These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29290665)
1. Generalized [Formula: see text]-Bleimann-Butzer-Hahn operators and some approximation results. Mursaleen M; Nasiruzzaman M; Ansari KJ; Alotaibi A J Inequal Appl; 2017; 2017(1):310. PubMed ID: 29290665 [TBL] [Abstract][Full Text] [Related]
2. Approximation properties of Cai QB; Lian BY; Zhou G J Inequal Appl; 2018; 2018(1):61. PubMed ID: 29576718 [TBL] [Abstract][Full Text] [Related]
3. Approximation properties of Chlodowsky variant of [Formula: see text] Bernstein-Stancu-Schurer operators. Mishra VN; Mursaleen M; Pandey S; Alotaibi A J Inequal Appl; 2017; 2017(1):176. PubMed ID: 28824262 [TBL] [Abstract][Full Text] [Related]
4. On modified Dunkl generalization of Szász operators via Mursaleen M; Nasiruzzaman M; Alotaibi A J Inequal Appl; 2017; 2017(1):38. PubMed ID: 28239243 [TBL] [Abstract][Full Text] [Related]
5. Bivariate tensor product [Formula: see text]-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators. Cai QB; Xu XW; Zhou G J Inequal Appl; 2017; 2017(1):284. PubMed ID: 29213195 [TBL] [Abstract][Full Text] [Related]
6. On [Formula: see text]-Szász-Mirakyan operators and their approximation properties. Mursaleen M; Al-Abied A; Alotaibi A J Inequal Appl; 2017; 2017(1):196. PubMed ID: 28904517 [TBL] [Abstract][Full Text] [Related]
7. Statistical deferred weighted [Formula: see text]-summability and its applications to associated approximation theorems. Pradhan T; Paikray SK; Jena BB; Dutta H J Inequal Appl; 2018; 2018(1):65. PubMed ID: 29606842 [TBL] [Abstract][Full Text] [Related]
8. Weighted norm inequalities for Toeplitz type operators associated to generalized Calderón-Zygmund operators. Tang Y; Ban T Springerplus; 2016; 5(1):1352. PubMed ID: 27588245 [TBL] [Abstract][Full Text] [Related]
9. Modified Stancu operators based on inverse Polya Eggenberger distribution. Deshwal S; Agrawal PN; Araci S J Inequal Appl; 2017; 2017(1):57. PubMed ID: 28316455 [TBL] [Abstract][Full Text] [Related]
10. Shape-preserving properties of a new family of generalized Bernstein operators. Cai QB; Xu XW J Inequal Appl; 2018; 2018(1):241. PubMed ID: 30839680 [TBL] [Abstract][Full Text] [Related]
11. A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on Chauhan R; Ispir N; Agrawal PN J Inequal Appl; 2017; 2017(1):50. PubMed ID: 28298874 [TBL] [Abstract][Full Text] [Related]
12. Approximation by Kanat K; Sofyalıoğlu M J Inequal Appl; 2018; 2018(1):263. PubMed ID: 30363786 [TBL] [Abstract][Full Text] [Related]
13. A basic problem of [Formula: see text]-Bernstein-type operators. Cai QB; Xu XW J Inequal Appl; 2017; 2017(1):140. PubMed ID: 28680243 [TBL] [Abstract][Full Text] [Related]
14. The Bézier variant of Kantorovich type Cai QB J Inequal Appl; 2018; 2018(1):90. PubMed ID: 29681722 [TBL] [Abstract][Full Text] [Related]
15. A Dunkl type generalization of Szász operators via post-quantum calculus. Alotaibi A; Nasiruzzaman M; Mursaleen M J Inequal Appl; 2018; 2018(1):287. PubMed ID: 30839755 [TBL] [Abstract][Full Text] [Related]
16. Endpoint regularity of discrete multisublinear fractional maximal operators associated with [Formula: see text]-balls. Liu F J Inequal Appl; 2018; 2018(1):33. PubMed ID: 29456416 [TBL] [Abstract][Full Text] [Related]
17. Blending type approximation by Cai QB; Zhou G J Inequal Appl; 2018; 2018(1):268. PubMed ID: 30363771 [TBL] [Abstract][Full Text] [Related]
18. Lipschitz estimates for commutators of singular integral operators associated with the sections. Wang G; Zhou J J Inequal Appl; 2017; 2017(1):27. PubMed ID: 28190940 [TBL] [Abstract][Full Text] [Related]
19. The approximation of bivariate Chlodowsky-Szász-Kantorovich-Charlier-type operators. Agrawal PN; Baxhaku B; Chauhan R J Inequal Appl; 2017; 2017(1):195. PubMed ID: 28890633 [TBL] [Abstract][Full Text] [Related]
20. A note on [Formula: see text]-Bernstein polynomials and their applications based on [Formula: see text]-calculus. Agyuz E; Acikgoz M J Inequal Appl; 2018; 2018(1):81. PubMed ID: 29670323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]