These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29291058)

  • 1. Platinum catalyzed hydrodeoxygenation of guaiacol in illumination of cresol production: a density functional theory study.
    Verma AM; Kishore N
    R Soc Open Sci; 2017 Nov; 4(11):170650. PubMed ID: 29291058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular modeling approach to elucidate gas phase hydrodeoxygenation of guaiacol over a Pd(111) catalyst within DFT framework.
    Verma AM; Kishore N
    J Mol Model; 2018 Aug; 24(9):254. PubMed ID: 30151645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodeoxygenation of Guaiacol over Ceria-Zirconia Catalysts.
    Schimming SM; LaMont OD; König M; Rogers AK; D'Amico AD; Yung MM; Sievers C
    ChemSusChem; 2015 Jun; 8(12):2073-83. PubMed ID: 26036450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst.
    Lee H; Kim H; Yu MJ; Ko CH; Jeon JK; Jae J; Park SH; Jung SC; Park YK
    Sci Rep; 2016 Jun; 6():28765. PubMed ID: 27357731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guaiacol hydrodeoxygenation mechanism on Pt(111): insights from density functional theory and linear free energy relations.
    Lee K; Gu GH; Mullen CA; Boateng AA; Vlachos DG
    ChemSusChem; 2015 Jan; 8(2):315-22. PubMed ID: 25470789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Study on Ring Saturation of 2-Hydroxybenzaldehyde Using Density Functional Theory.
    Verma AM; Agrawal K; Kishore N
    ACS Omega; 2018 Aug; 3(8):8546-8552. PubMed ID: 31458984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.
    Mu W; Ben H; Du X; Zhang X; Hu F; Liu W; Ragauskas AJ; Deng Y
    Bioresour Technol; 2014 Dec; 173():6-10. PubMed ID: 25280108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrotreating of Guaiacol and Acetic Acid Blends over Ni
    Gutiérrez-Rubio S; Moreno I; Serrano DP; Coronado JM
    ACS Omega; 2019 Dec; 4(25):21516-21528. PubMed ID: 31867548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic Study of the Pyrolysis and Oxidation of Guaiacol.
    Nowakowska M; Herbinet O; Dufour A; Glaude PA
    J Phys Chem A; 2018 Oct; 122(39):7894-7909. PubMed ID: 30200758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodeoxygenation of Guaiacol Over Pt/Al-SBA-15 Catalysts.
    Yu MJ; Park SH; Jeon JK; Ryu C; Sohn JM; Kim SC; Park YK
    J Nanosci Nanotechnol; 2015 Jan; 15(1):527-31. PubMed ID: 26328395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT insights into competing mechanisms of guaiacol hydrodeoxygenation on a platinum cluster.
    Nania C; Bertini M; Gueci L; Ferrante F; Duca D
    Phys Chem Chem Phys; 2023 Apr; 25(15):10460-10471. PubMed ID: 36987564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone.
    Tao Y; Fishman A; Bentley WE; Wood TK
    J Bacteriol; 2004 Jul; 186(14):4705-13. PubMed ID: 15231803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Upgrading of Furanics and Phenolics through Hydroxyalkylation/Aldol Condensation Reactions.
    Bui TV; Sooknoi T; Resasco DE
    ChemSusChem; 2017 Apr; 10(7):1631-1639. PubMed ID: 27910256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolism of cresols by species of Pseudomonas.
    Bayly RC; Dagley S; Gibson DT
    Biochem J; 1966 Nov; 101(2):293-301. PubMed ID: 5966268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO
    Wang X; Zhu S; Wang S; He Y; Liu Y; Wang J; Fan W; Lv Y
    RSC Adv; 2019 Jan; 9(7):3868-3876. PubMed ID: 35518115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Alkali and Alkaline-Earth Metals on the Cleavage of Glycosidic Bond in Biomass Pyrolysis: A DFT Study Using Cellobiose as a Model Compound.
    Arora JS; Chew JW; Mushrif SH
    J Phys Chem A; 2018 Sep; 122(38):7646-7658. PubMed ID: 30178999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin-based monophenolic model compounds in L-tyrosine derivative synthesis via tyrosine phenol lyase.
    Romakkaniemi I; Panula-Perälä J; Ahola J; Mikola M; Tanskanen J
    Enzyme Microb Technol; 2024 Dec; 181():110519. PubMed ID: 39369487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and purification of polyphenol oxidase from artichoke (Cynara scolymus L.).
    Dogan S; Turan Y; Ertürk H; Arslan O
    J Agric Food Chem; 2005 Feb; 53(3):776-85. PubMed ID: 15686433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct evidence from in situ FTIR spectroscopy that o-quinonemethide is a key intermediate during the pyrolysis of guaiacol.
    Cheng H; Wu S; Huang J; Zhang X
    Anal Bioanal Chem; 2017 Apr; 409(10):2531-2537. PubMed ID: 28188351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.