These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29291058)

  • 21. [Effects of phenol and related compounds on erythrocytes and hepatocytes from rats and dipalmitoyl phosphatidylcholine-liposomes].
    Usami K; Manabe A; Nakayama S; Sakamoto K
    Nihon Yakurigaku Zasshi; 1987 Apr; 89(4):235-41. PubMed ID: 3609969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Performance Evolution of Ni
    Wang HH; Liu ZL; Song YC; Li H
    ACS Omega; 2020 Sep; 5(34):21330-21337. PubMed ID: 32905439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol.
    Furutani Y; Dohara Y; Kudo S; Hayashi JI; Norinaga K
    J Phys Chem A; 2017 Nov; 121(44):8495-8503. PubMed ID: 29016140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.
    Duan H; Dong J; Gu X; Peng YK; Chen W; Issariyakul T; Myers WK; Li MJ; Yi N; Kilpatrick AFR; Wang Y; Zheng X; Ji S; Wang Q; Feng J; Chen D; Li Y; Buffet JC; Liu H; Tsang SCE; O'Hare D
    Nat Commun; 2017 Sep; 8(1):591. PubMed ID: 28928359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodeoxygenation of Pyrolysis Bio-Oil Over Ni Impregnated Mesoporous Materials.
    Lee IG; Lee H; Kang BS; Kim YM; Kim SC; Jung SC; Ko CH; Park YK
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1331-1335. PubMed ID: 29448585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomass hydrodeoxygenation catalysts innovation from atomistic activity predictors.
    Morteo-Flores F; Engel J; Roldan A
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2176):20200056. PubMed ID: 32623992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The catalytic hydrogenolysis of compounds derived from guaiacol on the Cu (111) surface: mechanisms from DFT studies.
    Konadu D; Kwawu CR; Menkah ES; Tia R; Adei E; de Leeuw N
    Phys Chem Chem Phys; 2023 Feb; 25(8):6247-6252. PubMed ID: 36757284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks.
    Ben H; Wu F; Wu Z; Han G; Jiang W; Ragauskas AJ
    Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31450759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalysis Meets Nonthermal Separation for the Production of (Alkyl)phenols and Hydrocarbons from Pyrolysis Oil.
    Cao Z; Engelhardt J; Dierks M; Clough MT; Wang GH; Heracleous E; Lappas A; Rinaldi R; Schüth F
    Angew Chem Int Ed Engl; 2017 Feb; 56(9):2334-2339. PubMed ID: 28128486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Converting solid wastes into liquid fuel using a novel methanolysis process.
    Xiao Y; He P; Cheng W; Liu J; Shan W; Song H
    Waste Manag; 2016 Mar; 49():304-310. PubMed ID: 26739453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolysis of Cyclopentadienone: Mechanistic Insights from a Direct Measurement of Product Branching Ratios.
    Ormond TK; Scheer AM; Nimlos MR; Robichaud DJ; Troy TP; Ahmed M; Daily JW; Nguyen TL; Stanton JF; Ellison GB
    J Phys Chem A; 2015 Jul; 119(28):7222-34. PubMed ID: 25608038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental study on composition evolution of biomass pyrolysis vapors with condensing temperature in a vertical tubular condenser.
    Wang C; Sun M; Deng J; Zhu X
    Bioresour Technol; 2020 Jul; 307():123252. PubMed ID: 32247273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular simulations of palladium catalysed hydrodeoxygenation of 2-hydroxybenzaldehyde using density functional theory.
    Verma AM; Kishore N
    Phys Chem Chem Phys; 2017 Sep; 19(37):25582-25597. PubMed ID: 28902200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Transfer Hydrogenation of Biomass-Derived Substrates to Value-Added Chemicals on Dual-Function Catalysts: Opportunities and Challenges.
    Jin X; Yin B; Xia Q; Fang T; Shen J; Kuang L; Yang C
    ChemSusChem; 2019 Jan; 12(1):71-92. PubMed ID: 30240143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hollow MFI Zeolite Supported Pt Catalysts for Highly Selective and Stable Hydrodeoxygenation of Guaiacol to Cycloalkanes.
    Niu X; Feng F; Yuan G; Zhang X; Wang Q
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature Dependence of Single Step Hydrodeoxygenation of Liquid Phase Pyrolysis Oil.
    Treusch K; Schwaiger N; Schlackl K; Nagl R; Pucher P; Siebenhofer M
    Front Chem; 2018; 6():297. PubMed ID: 30073163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.