These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29291058)

  • 41. One-Pot Synthesis of Active Carbon-Supported Size-Tunable Ni
    Li H; Li G; Liu Z
    ACS Omega; 2019 Jan; 4(1):2075-2080. PubMed ID: 31459456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. OH-Initiated Reactions of
    Hudzik JM; Bozzelli JW; Asatryan R; Ruckenstein E
    J Phys Chem A; 2020 Jun; 124(24):4905-4915. PubMed ID: 32432474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dissociation kinetics of macrocyclic trivalent lanthanide complexes of 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (DO2A).
    Lin CC; Chen CL; Liu KY; Chang CA
    Dalton Trans; 2011 Jun; 40(23):6268-77. PubMed ID: 21369608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening.
    van Rossum G; Zhao W; Castellvi Barnes M; Lange JP; Kersten SR
    ChemSusChem; 2014 Jan; 7(1):253-9. PubMed ID: 24265195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chlorella to fuel conversion on amphiphilic SO
    Yu C; Yue L; Bian J; Qi Z; Li C
    Bioresour Technol; 2020 Aug; 310():123472. PubMed ID: 32388205
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical prediction of the heats of formation of C2H5O* radicals derived from ethanol and of the kinetics of beta-C-C scission in the ethoxy radical.
    Matus MH; Nguyen MT; Dixon DA
    J Phys Chem A; 2007 Jan; 111(1):113-26. PubMed ID: 17201394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterisation of bio-oil and its sub-fractions from catalytic fast pyrolysis of biomass mixture.
    Kar T; Keleş S
    Waste Manag Res; 2019 Jul; 37(7):674-685. PubMed ID: 30967100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses.
    Vasudev V; Ku X; Lin J
    Bioresour Technol; 2019 Sep; 288():121496. PubMed ID: 31128538
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.
    Wang N; Tahmasebi A; Yu J; Xu J; Huang F; Mamaeva A
    Bioresour Technol; 2015 Aug; 190():89-96. PubMed ID: 25935388
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production.
    Pan C; Chen A; Liu Z; Chen P; Lou H; Zheng X
    Bioresour Technol; 2012 Dec; 125():335-9. PubMed ID: 23069602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass.
    Zhang C; Zhang ZC
    Chem Rec; 2019 Sep; 19(9):2044-2057. PubMed ID: 31483089
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.
    Zhang B; Zhong Z; Xie Q; Liu S; Ruan R
    J Environ Sci (China); 2016 Jul; 45():240-7. PubMed ID: 27372139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation.
    Zhang H; Wang Y; Shao S; Xiao R
    Sci Rep; 2016 Nov; 6():37513. PubMed ID: 27869228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Effect of Pristine and Hydroxylated Oxide Surfaces on the Guaiacol HDO Process: A DFT Study.
    Morteo-Flores F; Roldan A
    Chemphyschem; 2022 Jan; 23(1):e202100583. PubMed ID: 34495572
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor.
    Thangalazhy-Gopakumar S; Adhikari S; Ravindran H; Gupta RB; Fasina O; Tu M; Fernando SD
    Bioresour Technol; 2010 Nov; 101(21):8389-95. PubMed ID: 20558057
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst.
    Wang Y; Wei H; Zhao Y; Sun W; Sun C
    J Hazard Mater; 2017 Mar; 326():36-46. PubMed ID: 27987448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acrylic acid hydrodeoxygenation reaction mechanism over molybdenum carbide studied by DFT calculations.
    Oliveira RR; Rocha AB
    J Mol Model; 2019 Sep; 25(10):309. PubMed ID: 31506886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic and Kinetic Investigations on the Ozonolysis of Biomass Burning Products: Guaiacol, Syringol and Creosol.
    Chen X; Sun Y; Qi Y; Liu L; Xu F; Zhao Y
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31514377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement.
    Lepik R; Tenno T
    Environ Technol; 2012; 33(1-3):329-39. PubMed ID: 22519119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.