These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29291058)

  • 61. Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru
    Tian S; Wang Z; Gong W; Chen W; Feng Q; Xu Q; Chen C; Chen C; Peng Q; Gu L; Zhao H; Hu P; Wang D; Li Y
    J Am Chem Soc; 2018 Sep; 140(36):11161-11164. PubMed ID: 30160108
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals.
    Morgan HM; Bu Q; Liang J; Liu Y; Mao H; Shi A; Lei H; Ruan R
    Bioresour Technol; 2017 Apr; 230():112-121. PubMed ID: 28167357
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis.
    Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q
    Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Study of Conversion of Bio-oil Model Compounds in Supercritical Water Using Density Functional Theory.
    Agrawal K; Kishore N
    Sci Rep; 2020 Jun; 10(1):9247. PubMed ID: 32514130
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of different ash/organics and C/H/O ratios on characteristics and reaction mechanisms of sludge microwave pyrolysis to generate bio-fuels.
    Luo J; Lin J; Ma R; Chen X; Sun S; Zhang P; Liu X
    Waste Manag; 2020 Nov; 117():188-197. PubMed ID: 32861081
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals.
    Cheng S; Wei L; Zhao X; Kadis E; Cao Y; Julson J; Gu Z
    N Biotechnol; 2016 Jun; 33(4):440-8. PubMed ID: 26902668
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil.
    Wang C; Luo Z; Diao R; Zhu X
    Bioresour Technol; 2019 Aug; 285():121370. PubMed ID: 31022576
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Catalytic fast pyrolysis of lignocellulosic biomass.
    Liu C; Wang H; Karim AM; Sun J; Wang Y
    Chem Soc Rev; 2014 Nov; 43(22):7594-623. PubMed ID: 24801125
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrodeoxygenation of Bio-Derived Phenol to Cyclohexane Fuel Catalyzed by Bifunctional Mesoporous Organic-Inorganic Hybrids.
    Mo L; Yu W; Cai H; Lou H; Zheng X
    Front Chem; 2018; 6():216. PubMed ID: 29963548
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Valorization of algal waste via pyrolysis in a fixed-bed reactor: Production and characterization of bio-oil and bio-char.
    Aboulkas A; Hammani H; El Achaby M; Bilal E; Barakat A; El Harfi K
    Bioresour Technol; 2017 Nov; 243():400-408. PubMed ID: 28688323
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.
    Xu X; Zhang C; Liu Y; Zhai Y; Zhang R
    Chemosphere; 2013 Oct; 93(4):652-60. PubMed ID: 23876507
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Disassembly of lignin and chemical recovery in supercritical water and p-cresol mixture. Studies on lignin model compounds.
    Okuda K; Ohara S; Umetsu M; Takami S; Adschiri T
    Bioresour Technol; 2008 Apr; 99(6):1846-52. PubMed ID: 17540557
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Thermogravimetric characteristics and pyrolysis kinetics of alga Sagarssum sp. biomass.
    Kim SS; Ly HV; Kim J; Choi JH; Woo HC
    Bioresour Technol; 2013 Jul; 139():242-8. PubMed ID: 23665684
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer.
    Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK
    Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Heterogeneous Iron Catalysts.
    Li J; Liu JL; Liu HY; Xu GY; Zhang JJ; Liu JX; Zhou GL; Li Q; Xu ZH; Fu Y
    ChemSusChem; 2017 Apr; 10(7):1436-1447. PubMed ID: 28160439
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A review on pyrolysis of protein-rich biomass: Nitrogen transformation.
    Leng L; Yang L; Chen J; Leng S; Li H; Li H; Yuan X; Zhou W; Huang H
    Bioresour Technol; 2020 Nov; 315():123801. PubMed ID: 32673983
    [TBL] [Abstract][Full Text] [Related]  

  • 79. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Catalytic degradation of O-cresol using H
    Herbache H; Ramdani A; Taleb Z; Ruiz-Rosas R; Taleb S; Morallón E; Pirault-Roy L; Ghaffour N
    Water Environ Res; 2019 Feb; 91(2):165-174. PubMed ID: 30735300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.