These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29291138)

  • 1. Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase.
    Petrović D; Frank D; Kamerlin SCL; Hoffmann K; Strodel B
    ACS Catal; 2017 Sep; 7(9):6188-6197. PubMed ID: 29291138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Role of a Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-phosphate Dehydrogenase.
    Mhashal AR; Romero-Rivera A; Mydy LS; Cristobal JR; Gulick AM; Richard JP; Kamerlin SCL
    ACS Catal; 2020 Oct; 10(19):11253-11267. PubMed ID: 33042609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism for conformation mobility of the active center of glucose oxidase adsorbed on single wall carbon nanotubes.
    Ye XS; Wang P; Zhou T; Liu J; Liu F
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2739-43. PubMed ID: 19964045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.
    Zhan T; Zhang K; Chen Y; Lin Y; Wu G; Zhang L; Yao P; Shao Z; Liu Z
    PLoS One; 2013; 8(11):e79175. PubMed ID: 24223901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution to improve the catalytic efficiency of urate oxidase from Bacillus subtilis.
    Li W; Xu S; Zhang B; Zhu Y; Hua Y; Kong X; Sun L; Hong J
    PLoS One; 2017; 12(5):e0177877. PubMed ID: 28531234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the thermostability and catalytic efficiency of glucose oxidase from Aspergillus niger by molecular evolution.
    Tu T; Wang Y; Huang H; Wang Y; Jiang X; Wang Z; Yao B; Luo H
    Food Chem; 2019 May; 281():163-170. PubMed ID: 30658743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site.
    Qiu JA; Wilson HL; Pushie MJ; Kisker C; George GN; Rajagopalan KV
    Biochemistry; 2010 May; 49(18):3989-4000. PubMed ID: 20356030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemical mechanism of action of glucose oxidase from Aspergillus niger.
    Wohlfahrt G; Trivić S; Zeremski J; Pericin D; Leskovac V
    Mol Cell Biochem; 2004 May; 260(1-2):69-83. PubMed ID: 15228088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational site-directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase.
    Harb LH; Arooj M; Vrielink A; Mancera RL
    Proteins; 2017 Sep; 85(9):1645-1655. PubMed ID: 28508424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies.
    Paramesvaran J; Hibbert EG; Russell AJ; Dalby PA
    Protein Eng Des Sel; 2009 Jul; 22(7):401-11. PubMed ID: 19502357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
    Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ
    Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant.
    Kamal MZ; Mohammad TA; Krishnamoorthy G; Rao NM
    PLoS One; 2012; 7(4):e35188. PubMed ID: 22514720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme.
    Ferreira P; Ruiz-Dueñas FJ; Martínez MJ; van Berkel WJ; Martínez AT
    FEBS J; 2006 Nov; 273(21):4878-88. PubMed ID: 16999821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors.
    Leskovac V; Trivić S; Wohlfahrt G; Kandrac J; Pericin D
    Int J Biochem Cell Biol; 2005 Apr; 37(4):731-50. PubMed ID: 15694834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.
    Bueno AN; Shrestha RK; Ronau JA; Babar A; Sheedlo MJ; Fuchs JE; Paul LN; Das C
    Biochemistry; 2015 Oct; 54(39):6038-51. PubMed ID: 26368668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory Evolution of GH11 Endoxylanase Through DNA Shuffling: Effects of Distal Residue Substitution on Catalytic Activity and Active Site Architecture.
    Liu MQ; Li JY; Rehman AU; Xu X; Gu ZJ; Wu RC
    Front Bioeng Biotechnol; 2019; 7():350. PubMed ID: 31824938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement in catalytic activity of Aspergillus niger XynB by selective site-directed mutagenesis of active site amino acids.
    Wu X; Tian Z; Jiang X; Zhang Q; Wang L
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):249-260. PubMed ID: 29103167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Site Desolvation and Thermostability Trade-Offs in the Evolution of Catalytically Diverse Triazine Hydrolases.
    Sugrue E; Carr PD; Scott C; Jackson CJ
    Biochemistry; 2016 Nov; 55(45):6304-6313. PubMed ID: 27768291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.