BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29291262)

  • 21. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins.
    Khiaosa-Ard R; Bryner SF; Scheeder MR; Wettstein HR; Leiber F; Kreuzer M; Soliva CR
    J Dairy Sci; 2009 Jan; 92(1):177-88. PubMed ID: 19109277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column.
    Delmonte P; Fardin Kia AR; Kramer JK; Mossoba MM; Sidisky L; Rader JI
    J Chromatogr A; 2011 Jan; 1218(3):545-54. PubMed ID: 21176911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short communication: docosahexaenoic acid promotes vaccenic acid accumulation in mixed ruminal cultures when incubated with linoleic acid.
    AbuGhazaleh AA; Jenkins TC
    J Dairy Sci; 2004 Apr; 87(4):1047-50. PubMed ID: 15259240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem.
    Jenkins TC; Wallace RJ; Moate PJ; Mosley EE
    J Anim Sci; 2008 Feb; 86(2):397-412. PubMed ID: 18042812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and structural analysis of the cyclic fatty acid monomers formed from eicosapentaenoic and docosahexaenoic acids during fish oil deodorization.
    Berdeaux O; Fournier V; Lambelet P; Dionisi F; Sébédio JL; Destaillats F
    J Chromatogr A; 2007 Jan; 1138(1-2):216-24. PubMed ID: 17113094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steady-state rates of linoleic acid biohydrogenation by ruminal bacteria in continuous culture.
    Fellner V; Sauer FD; Kramer JK
    J Dairy Sci; 1995 Aug; 78(8):1815-23. PubMed ID: 8786265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation.
    Kim EJ; Sanderson R; Dhanoa MS; Dewhurst RJ
    J Dairy Sci; 2005 Sep; 88(9):3220-30. PubMed ID: 16107412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro.
    Wu Z; Palmquist DL
    J Dairy Sci; 1991 Sep; 74(9):3035-46. PubMed ID: 1779057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rumen bacterial community responses to DPA, EPA and DHA in cattle and sheep: A comparative in vitro study.
    Carreño D; Toral PG; Pinloche E; Belenguer A; Yáñez-Ruiz DR; Hervás G; McEwan NR; Newbold CJ; Frutos P
    Sci Rep; 2019 Aug; 9(1):11857. PubMed ID: 31413283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils.
    Rego OA; Alves SP; Antunes LM; Rosa HJ; Alfaia CF; Prates JA; Cabrita AR; Fonseca AJ; Bessa RJ
    J Dairy Sci; 2009 Sep; 92(9):4530-40. PubMed ID: 19700715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro.
    Troegeler-Meynadier A; Nicot MC; Bayourthe C; Moncoulon R; Enjalbert F
    J Dairy Sci; 2003 Dec; 86(12):4054-63. PubMed ID: 14740844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of eicosapentaenoic and docosahexaenoic acid geometrical isomers formed during fish oil deodorization.
    Fournier V; Juanéda P; Destaillats F; Dionisi F; Lambelet P; Sébédio JL; Berdeaux O
    J Chromatogr A; 2006 Sep; 1129(1):21-8. PubMed ID: 16893549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizations of environmental factors in conjugated linoleic acid production by mixed rumen bacteria.
    Choi NJ; Park HG; Kim JH; Hwang HJ; Kwon KH; Yoon JA; Kwon EG; Chang J; Hwang IH; Kim YJ
    J Agric Food Chem; 2009 Oct; 57(19):9263-7. PubMed ID: 19754193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of ruminal pulse dose of polyunsaturated fatty acids on ruminal microbial populations and duodenal flow and milk profiles of fatty acids.
    Liu SJ; Bu DP; Wang JQ; Sun P; Wei HY; Zhou LY; Yu ZT
    J Dairy Sci; 2011 Jun; 94(6):2977-85. PubMed ID: 21605768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria.
    Nam IS; Garnsworthy PC
    J Appl Microbiol; 2007 Sep; 103(3):551-6. PubMed ID: 17714387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial biohydrogenation of oleic acid to trans isomers in vitro.
    Mosley EE; Powell GL; Riley MB; Jenkins TC
    J Lipid Res; 2002 Feb; 43(2):290-6. PubMed ID: 11861671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Papaya (Carica papaya) leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation.
    Jafari S; Goh YM; Rajion MA; Jahromi MF; Ahmad YH; Ebrahimi M
    Anim Sci J; 2017 Feb; 88(2):267-276. PubMed ID: 27345820
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Technical note: stearidonic acid metabolism by mixed ruminal microorganisms in vitro.
    Maia MR; Correia CA; Alves SP; Fonseca AJ; Cabrita AR
    J Anim Sci; 2012 Mar; 90(3):900-4. PubMed ID: 22021809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The trans-10,cis-15 18:2: a missing intermediate of trans-10 shifted rumen biohydrogenation pathway?
    Alves SP; Bessa RJ
    Lipids; 2014 Jun; 49(6):527-41. PubMed ID: 24677182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolism of α-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms.
    Honkanen AM; Leskinen H; Toivonen V; McKain N; Wallace RJ; Shingfield KJ
    Br J Nutr; 2016 Jun; 115(12):2093-105. PubMed ID: 27087357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.