These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 29291465)
1. Deformation regimes of collagen fibrils in cortical bone revealed by in situ morphology and elastic modulus observations under mechanical loading. Yang PF; Nie XT; Zhao DD; Wang Z; Ren L; Xu HY; Rittweger J; Shang P J Mech Behav Biomed Mater; 2018 Mar; 79():115-121. PubMed ID: 29291465 [TBL] [Abstract][Full Text] [Related]
2. Disuse Impairs the Mechanical Competence of Bone by Regulating the Characterizations of Mineralized Collagen Fibrils in Cortical Bone. Yang PF; Nie XT; Wang Z; Al-Qudsy LHH; Ren L; Xu HY; Rittweger J; Shang P Front Physiol; 2019; 10():775. PubMed ID: 31293444 [TBL] [Abstract][Full Text] [Related]
3. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse. Liu F; Hu K; Al-Qudsy LH; Wu LQ; Wang Z; Xu HY; Yang H; Yang PF Acta Biomater; 2022 Oct; 152():345-354. PubMed ID: 36087867 [TBL] [Abstract][Full Text] [Related]
4. Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. Tai K; Qi HJ; Ortiz C J Mater Sci Mater Med; 2005 Oct; 16(10):947-59. PubMed ID: 16167103 [TBL] [Abstract][Full Text] [Related]
5. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model. Akkus O J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345 [TBL] [Abstract][Full Text] [Related]
6. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale. Fielder M; Nair AK Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113 [TBL] [Abstract][Full Text] [Related]
7. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks. Wang Y; Ural A J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689 [TBL] [Abstract][Full Text] [Related]
8. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone. Wang Y; Ural A J Mech Behav Biomed Mater; 2018 Jun; 82():18-26. PubMed ID: 29567526 [TBL] [Abstract][Full Text] [Related]
9. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. Al-Qudsy L; Hu YW; Xu H; Yang PF ACS Biomater Sci Eng; 2023 May; 9(5):2203-2219. PubMed ID: 37075172 [TBL] [Abstract][Full Text] [Related]
10. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. Takano Y; Turner CH; Burr DB J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904 [TBL] [Abstract][Full Text] [Related]
11. Role of intrafibrillar collagen mineralization in defining the compressive properties of nascent bone. Nair AK; Gautieri A; Buehler MJ Biomacromolecules; 2014 Jul; 15(7):2494-500. PubMed ID: 24892376 [TBL] [Abstract][Full Text] [Related]
12. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior. Wang Y; Ural A J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726 [TBL] [Abstract][Full Text] [Related]
13. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual Type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. Kemp AD; Harding CC; Cabral WA; Marini JC; Wallace JM J Struct Biol; 2012 Dec; 180(3):428-38. PubMed ID: 23041293 [TBL] [Abstract][Full Text] [Related]
14. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600 [TBL] [Abstract][Full Text] [Related]
15. A new model to simulate the elastic properties of mineralized collagen fibril. Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160 [TBL] [Abstract][Full Text] [Related]
16. Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril. Svensson RB; Hansen P; Hassenkam T; Haraldsson BT; Aagaard P; Kovanen V; Krogsgaard M; Kjaer M; Magnusson SP J Appl Physiol (1985); 2012 Feb; 112(3):419-26. PubMed ID: 22114175 [TBL] [Abstract][Full Text] [Related]
17. Preparation of collagen fibrils from mineralized tissues and evaluation by atomic force microscopy. Ryou H; Tay FR; Ossa A; Arola D J Mech Behav Biomed Mater; 2023 Feb; 138():105624. PubMed ID: 36543081 [TBL] [Abstract][Full Text] [Related]
18. Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. Hang F; Barber AH J R Soc Interface; 2011 Apr; 8(57):500-5. PubMed ID: 20961895 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. Balooch M; Habelitz S; Kinney JH; Marshall SJ; Marshall GW J Struct Biol; 2008 Jun; 162(3):404-10. PubMed ID: 18467127 [TBL] [Abstract][Full Text] [Related]
20. Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques. Dong XN; Almer JD; Wang X J Biomech; 2011 Feb; 44(4):676-82. PubMed ID: 21112589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]