BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 29291836)

  • 1. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR).
    Genisheva Z; Quintelas C; Mesquita DP; Ferreira EC; Oliveira JM; Amaral AL
    Food Chem; 2018 Apr; 246():172-178. PubMed ID: 29291836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid detection of volatile compounds in apple wines using FT-NIR spectroscopy.
    Ye M; Gao Z; Li Z; Yuan Y; Yue T
    Food Chem; 2016 Jan; 190():701-708. PubMed ID: 26213028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near infrared spectroscopy as a rapid tool to measure volatile aroma compounds in Riesling wine: possibilities and limits.
    Smyth HE; Cozzolino D; Cynkar WU; Dambergs RG; Sefton M; Gishen M
    Anal Bioanal Chem; 2008 Apr; 390(7):1911-6. PubMed ID: 18283438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of total and volatile acidity in red wines by Fourier-transform mid-infrared spectroscopy and iterative predictor weighting.
    Pizarro C; González-Sáiz JM; Esteban-Díez I; Orio P
    Anal Bioanal Chem; 2011 Feb; 399(6):2061-72. PubMed ID: 21042907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of sugars in Chinese rice wine by Fourier transform near-infrared spectroscopy with partial least-squares regression.
    Niu X; Shen F; Yu Y; Yan Z; Xu K; Yu H; Ying Y
    J Agric Food Chem; 2008 Aug; 56(16):7271-8. PubMed ID: 18680372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of polyphenolic compounds of red wines by UV-VIS-NIR spectroscopy and chemometrics tools.
    Martelo-Vidal MJ; Vázquez M
    Food Chem; 2014 Sep; 158():28-34. PubMed ID: 24731310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine.
    Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM
    Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of different measurement techniques and variable selection methods for FT-MIR in wine analysis.
    Friedel M; Patz CD; Dietrich H
    Food Chem; 2013 Dec; 141(4):4200-7. PubMed ID: 23993606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Feasibility Study on Monitoring Residual Sugar and Alcohol Strength in Kiwi Wine Fermentation Using a Fiber-Optic FT-NIR Spectrometry and PLS Regression.
    Wang B; Peng B
    J Food Sci; 2017 Feb; 82(2):358-363. PubMed ID: 28103396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy.
    Anjos O; Caldeira I; Fernandes TA; Pedro SI; Vitória C; Oliveira-Alves S; Catarino S; Canas S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm.
    Ouyang Q; Zhao J; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():280-5. PubMed ID: 26143319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Determination of wine original regions using information fusion of NIR and MIR spectroscopy].
    Xiang LL; Li MH; Li JM; Li JH; Zhang LD; Zhao LL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2662-6. PubMed ID: 25739204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of amino acids in Chinese rice wine by fourier transform near-infrared spectroscopy.
    Shen F; Niu X; Yang D; Ying Y; Li B; Zhu G; Wu J
    J Agric Food Chem; 2010 Sep; 58(17):9809-16. PubMed ID: 20707307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Fourier-Transform Infrared Spectroscopy for the Assessment of Wine Spoilage Indicators: A Feasibility Study.
    Teixeira Dos Santos CA; Páscoa RNMJ; Pérez-Del-Notario N; González-Sáiz JM; Pizarro C; Lopes JA
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils.
    Wójcicki K; Khmelinskii I; Sikorski M; Sikorska E
    Food Chem; 2015 Nov; 187():416-23. PubMed ID: 25977045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of optical path length on NIR analysis results for trace metal determination in Chinese rice wine].
    Yu HY; Ying YB; Xie LJ; Fu XP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1118-20. PubMed ID: 17763771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis.
    Li T; Su C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():131-140. PubMed ID: 29925045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid detection of three quality parameters and classification of wine based on Vis-NIR spectroscopy with wavelength selection by ACO and CARS algorithms.
    Hu L; Yin C; Ma S; Liu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():574-581. PubMed ID: 30075438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of near-infrared spectroscopy for the estimation of volatile compounds in Tempranillo Blanco grape berries during ripening.
    Marín-San Román S; Fernández-Novales J; Cebrián-Tarancón C; Sánchez-Gómez R; Diago MP; Garde-Cerdán T
    J Sci Food Agric; 2023 Oct; 103(13):6317-6329. PubMed ID: 37195204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.