These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 29291882)
41. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation. Nguyen MH; Yu H; Kiew TY; Hadinoto K Eur J Pharm Biopharm; 2015 Oct; 96():1-10. PubMed ID: 26170159 [TBL] [Abstract][Full Text] [Related]
42. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells. Zeighamian V; Darabi M; Akbarzadeh A; Rahmati-Yamchi M; Zarghami N; Badrzadeh F; Salehi R; Mirakabad FS; Taheri-Anganeh M Artif Cells Nanomed Biotechnol; 2016; 44(2):735-42. PubMed ID: 25819738 [TBL] [Abstract][Full Text] [Related]
43. Nanoparticulation of bovine serum albumin and poly-d-lysine through complex coacervation and encapsulation of curcumin. Maldonado L; Sadeghi R; Kokini J Colloids Surf B Biointerfaces; 2017 Nov; 159():759-769. PubMed ID: 28881302 [TBL] [Abstract][Full Text] [Related]
44. Curcumin loaded core-shell biopolymers colloid and its incorporation in Indian Basmati rice: An enhanced stability, anti-oxidant activity and sensory attributes of fortified rice. Pandey S; H A V; K RND; K AK; Rao PJ Food Chem; 2022 Sep; 387():132860. PubMed ID: 35430539 [TBL] [Abstract][Full Text] [Related]
45. Role of the templating approach in influencing the suitability of polymeric nanocapsules for drug delivery: LbL vs SC/MS. Goethals EC; Shukla R; Mistry V; Bhargava SK; Bansal V Langmuir; 2013 Oct; 29(39):12212-9. PubMed ID: 23998648 [TBL] [Abstract][Full Text] [Related]
46. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Asabuwa Ngwabebhoh F; Ilkar Erdagi S; Yildiz U Carbohydr Polym; 2018 Dec; 201():317-328. PubMed ID: 30241825 [TBL] [Abstract][Full Text] [Related]
48. Chitosan nanoparticles for lipophilic anticancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Abruzzo A; Zuccheri G; Belluti F; Provenzano S; Verardi L; Bigucci F; Cerchiara T; Luppi B; Calonghi N Colloids Surf B Biointerfaces; 2016 Sep; 145():362-372. PubMed ID: 27214786 [TBL] [Abstract][Full Text] [Related]
49. Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Wang F; Yang Y; Ju X; Udenigwe CC; He R J Agric Food Chem; 2018 Mar; 66(11):2685-2693. PubMed ID: 29451796 [TBL] [Abstract][Full Text] [Related]
50. Sequel of MgO nanoparticles in PLACL nanofibers for anti-cancer therapy in synergy with curcumin/β-cyclodextrin. Sudakaran SV; Venugopal JR; Vijayakumar GP; Abisegapriyan S; Grace AN; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():620-628. PubMed ID: 27987753 [TBL] [Abstract][Full Text] [Related]
51. Development of Enteromorpha prolifera polysaccharide-based nanoparticles for delivery of curcumin to cancer cells. Li J; Jiang F; Chi Z; Han D; Yu L; Liu C Int J Biol Macromol; 2018 Jun; 112():413-421. PubMed ID: 29410267 [TBL] [Abstract][Full Text] [Related]
52. The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Chen X; Zou LQ; Niu J; Liu W; Peng SF; Liu CM Molecules; 2015 Aug; 20(8):14293-311. PubMed ID: 26251892 [TBL] [Abstract][Full Text] [Related]
53. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Hasan M; Belhaj N; Benachour H; Barberi-Heyob M; Kahn CJ; Jabbari E; Linder M; Arab-Tehrany E Int J Pharm; 2014 Jan; 461(1-2):519-28. PubMed ID: 24355620 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of a Soybean Bowman-Birk Inhibitor (BBI) Nanodelivery Carrier To Improve Bioavailability of Curcumin. Liu C; Cheng F; Yang X J Agric Food Chem; 2017 Mar; 65(11):2426-2434. PubMed ID: 28249113 [TBL] [Abstract][Full Text] [Related]
55. Enhanced anti-tumor efficacy of paclitaxel with PEGylated lipidic nanocapsules in presence of curcumin and poloxamer: In vitro and in vivo studies. Anwar M; Akhter S; Mallick N; Mohapatra S; Zafar S; Rizvi MMA; Ali A; Ahmad FJ Pharmacol Res; 2016 Nov; 113(Pt A):146-165. PubMed ID: 27546165 [TBL] [Abstract][Full Text] [Related]
56. Exceptional colloidal stability of acidified whey protein beverages stabilized by soybean soluble polysaccharide. Zamani H; Zamani S; Zhang Z; Abbaspourrad A J Food Sci; 2020 Apr; 85(4):989-997. PubMed ID: 32198761 [TBL] [Abstract][Full Text] [Related]
57. Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Gu Y; Zhong Y; Meng F; Cheng R; Deng C; Zhong Z Biomacromolecules; 2013 Aug; 14(8):2772-80. PubMed ID: 23777504 [TBL] [Abstract][Full Text] [Related]
58. Self-assembly of biotinylated poly(ethylene glycol)-poly(curcumin) for paclitaxel delivery. Hu L; Li M; Zhang Z; Shen Y; Guo S Int J Pharm; 2018 Dec; 553(1-2):510-521. PubMed ID: 30308274 [TBL] [Abstract][Full Text] [Related]