BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 29292190)

  • 21. Confocal FRET microscopy to measure clustering of ligand-receptor complexes in endocytic membranes.
    Wallrabe H; Elangovan M; Burchard A; Periasamy A; Barroso M
    Biophys J; 2003 Jul; 85(1):559-71. PubMed ID: 12829510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of receptor trimers on the cell surface by flow cytometric fluorescence energy homotransfer measurements.
    Bene L; Szöllosi J; Szentesi G; Damjanovich L; Gáspár R; Waldmann TA; Damjanovich S
    Biochim Biophys Acta; 2005 Jun; 1744(2):176-98. PubMed ID: 15950751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photobleaching pathways in single-molecule FRET experiments.
    Kong X; Nir E; Hamadani K; Weiss S
    J Am Chem Soc; 2007 Apr; 129(15):4643-54. PubMed ID: 17375921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor.
    Laskaratou D; Fernández GS; Coucke Q; Fron E; Rocha S; Hofkens J; Hendrix J; Mizuno H
    Nat Commun; 2021 May; 12(1):2541. PubMed ID: 33953187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM).
    Clayton AH; Hanley QS; Arndt-Jovin DJ; Subramaniam V; Jovin TM
    Biophys J; 2002 Sep; 83(3):1631-49. PubMed ID: 12202387
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput FRET analysis of protein-protein interactions by slide-based imaging laser scanning cytometry.
    Szalóki N; Doan-Xuan QM; Szöllősi J; Tóth K; Vámosi G; Bacsó Z
    Cytometry A; 2013 Sep; 83(9):818-29. PubMed ID: 23843167
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells.
    Tramier M; Coppey-Moisan M
    Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-channel photobleaching FRET microscopy for improved resolution of protein association states in living cells.
    Clayton AH; Klonis N; Cody SH; Nice EC
    Eur Biophys J; 2005 Feb; 34(1):82-90. PubMed ID: 15232659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.
    Devauges V; Matthews DR; Aluko J; Nedbal J; Levitt JA; Poland SP; Coban O; Weitsman G; Monypenny J; Ng T; Ameer-Beg SM
    PLoS One; 2014; 9(10):e110695. PubMed ID: 25360776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.
    Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW
    J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using structure-function constraints in FRET studies of large macromolecular complexes.
    Bujalowski WM; Jezewska MJ
    Methods Mol Biol; 2012; 875():135-64. PubMed ID: 22573439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
    Fazekas Z; Petrás M; Fábián A; Pályi-Krekk Z; Nagy P; Damjanovich S; Vereb G; Szöllosi J
    Cytometry A; 2008 Mar; 73(3):209-19. PubMed ID: 18044751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast dynamics in a nanocage of enzymes: solvation and fluorescence resonance energy transfer in reverse micelles.
    Majumder P; Sarkar R; Shaw AK; Chakraborty A; Pal SK
    J Colloid Interface Sci; 2005 Oct; 290(2):462-74. PubMed ID: 15939425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FRET Assay for Ligands Targeting the Bacterial A-Site RNA.
    Sinkeldam RW; Tor Y
    Methods Mol Biol; 2019; 1973():251-260. PubMed ID: 31016707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superior robustness of ExEm-spFRET to IIem-spFRET method in live-cell FRET measurement.
    Lin F; Zhang C; Du M; Wang L; Mai Z; Chen T
    J Microsc; 2018 Nov; 272(2):145-150. PubMed ID: 30338530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy.
    Rizzo MA; Piston DW
    Biophys J; 2005 Feb; 88(2):L14-6. PubMed ID: 15613634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging protein interactions by FRET microscopy: FRET measurements by sensitized emission.
    Verveer PJ; Rocks O; Harpur AG; Bastiaens PI
    CSH Protoc; 2006 Nov; 2006(6):. PubMed ID: 22485984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence resonance energy transfer in microemulsions composed of tripled-chain surface active ionic liquids, RTILs, and biological solvent: an excitation wavelength dependence study.
    Banerjee C; Kundu N; Ghosh S; Mandal S; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Aug; 117(32):9508-17. PubMed ID: 23865472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.