BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29292445)

  • 1. Interactions of flavonoids with α-amylase and starch slowing down its digestion.
    Takahama U; Hirota S
    Food Funct; 2018 Feb; 9(2):677-687. PubMed ID: 29292445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine.
    Takahama U; Hirota S
    Food Chem; 2013 Nov; 141(1):313-9. PubMed ID: 23768363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of starch digestion by flavonoids: Role of flavonoid-amylase binding kinetics.
    D'Costa AS; Bordenave N
    Food Chem; 2021 Mar; 341(Pt 2):128256. PubMed ID: 33035827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases.
    Lim J; Zhang X; Ferruzzi MG; Hamaker BR
    Food Chem; 2019 Aug; 288():413-421. PubMed ID: 30902312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of Pancreatin-Induced Digestion of Cooked Rice Starch by Adzuki (Vigana angularis) Bean Flavonoids and the Possibility of a Decrease in the Inhibitory Effects in the Stomach.
    Hirota S; Takahama U
    J Agric Food Chem; 2017 Mar; 65(10):2172-2179. PubMed ID: 28219009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of starch with a cyanidin-catechin pigment (vignacyanidin) isolated from Vigna angularis bean.
    Takahama U; Yamauchi R; Hirota S
    Food Chem; 2013 Dec; 141(3):2600-5. PubMed ID: 23871000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of domestic cooking on the starch digestibility, predicted glycemic indices, polyphenol contents and alpha amylase inhibitory properties of beans (Phaseolis vulgaris) and breadfruit (Treculia africana).
    Chinedum E; Sanni S; Theressa N; Ebere A
    Int J Biol Macromol; 2018 Jan; 106():200-206. PubMed ID: 28802846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase.
    Lo Piparo E; Scheib H; Frei N; Williamson G; Grigorov M; Chou CJ
    J Med Chem; 2008 Jun; 51(12):3555-61. PubMed ID: 18507367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms.
    Yang JP; He H; Lu YH
    J Agric Food Chem; 2014 Aug; 62(31):7760-70. PubMed ID: 25019533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR).
    Martinez-Gonzalez AI; Díaz-Sánchez ÁG; de la Rosa LA; Bustos-Jaimes I; Alvarez-Parrilla E
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():437-447. PubMed ID: 30172871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure activity relationships of flavonoids as potent alpha-amylase inhibitors.
    Yuan E; Liu B; Wei Q; Yang J; Chen L; Li Q
    Nat Prod Commun; 2014 Aug; 9(8):1173-6. PubMed ID: 25233601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persimmon Tannin Decreased the Glycemic Response through Decreasing the Digestibility of Starch and Inhibiting α-Amylase, α-Glucosidase, and Intestinal Glucose Uptake.
    Li K; Yao F; Du J; Deng X; Li C
    J Agric Food Chem; 2018 Feb; 66(7):1629-1637. PubMed ID: 29388426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of starch digestion: The role of hydrophobic domain of both α-amylase and substrates.
    Liu QZ; Zhang H; Dai HQ; Zhao P; Mao YF; Chen KX; Chen ZX
    Food Chem; 2021 Mar; 341(Pt 1):128211. PubMed ID: 33032248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mechanisms of Alpha-Amylase Inhibition by Flavan-3-Ols and the Possible Impacts of Drinking Green Tea on Starch Digestion.
    Desseaux V; Stocker P; Brouant P; Ajandouz EH
    J Food Sci; 2018 Nov; 83(11):2858-2865. PubMed ID: 30289967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci.
    Aizawa S; Miyasawa-Hori H; Nakajo K; Washio J; Mayanagi H; Fukumoto S; Takahashi N
    Caries Res; 2009; 43(1):17-24. PubMed ID: 19136828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase.
    Ahmadi-Abhari S; Woortman AJ; Oudhuis AA; Hamer RJ; Loos K
    Carbohydr Polym; 2013 Sep; 97(2):436-40. PubMed ID: 23911468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography.
    Ahmadi-Abhari S; Woortman AJ; Hamer RJ; Loos K
    Food Chem; 2013 Dec; 141(4):4318-23. PubMed ID: 23993621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content.
    Ji N; Liu C; Li M; Sun Q; Xiong L
    Food Chem; 2018 Apr; 245():481-487. PubMed ID: 29287399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell structure and starch nature as key determinants of the digestion rate of starch in legume.
    Würsch P; Del Vedovo S; Koellreutter B
    Am J Clin Nutr; 1986 Jan; 43(1):25-9. PubMed ID: 3484604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans.
    Layer P; Carlson GL; DiMagno EP
    Gastroenterology; 1985 Jun; 88(6):1895-902. PubMed ID: 2581844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.