These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29292459)

  • 1. Theoretical insights into the catalytic mechanism for the oxygen reduction reaction on M
    Tian Y; Zhang Z; Wu C; Yan L; Chen W; Su Z
    Phys Chem Chem Phys; 2018 Jan; 20(3):1821-1828. PubMed ID: 29292459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution.
    Chen S; Dai J; Zeng XC
    Phys Chem Chem Phys; 2015 Feb; 17(8):5954-8. PubMed ID: 25636056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Activity Improvement of the TM
    Xiao B; Zhu H; Liu H; Jiang X; Jiang Q
    Front Chem; 2018; 6():351. PubMed ID: 30258838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous Electrical Conductivity Variation in M
    Chen T; Dou JH; Yang L; Sun C; Libretto NJ; Skorupskii G; Miller JT; Dincă M
    J Am Chem Soc; 2020 Jul; 142(28):12367-12373. PubMed ID: 32532157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridine derivative/graphene nanoribbon composites as molecularly tunable heterogeneous electrocatalysts for the oxygen reduction reaction.
    Zhang H; Zhao J; Cai Q
    Phys Chem Chem Phys; 2016 Feb; 18(6):5040-7. PubMed ID: 26812233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.
    Miner EM; Fukushima T; Sheberla D; Sun L; Surendranath Y; Dincă M
    Nat Commun; 2016 Mar; 7():10942. PubMed ID: 26952523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe- and Co-P4-embedded graphenes as electrocatalysts for the oxygen reduction reaction: theoretical insights.
    Feng L; Liu Y; Zhao J
    Phys Chem Chem Phys; 2015 Nov; 17(45):30687-94. PubMed ID: 26523404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Screening of Two-Dimensional Metal-Organic Frameworks as Efficient Single-Atom Catalysts for Oxygen Reduction Reaction.
    Qiao M; Xie J; Zhu D
    Chemistry; 2023 Jun; 29(33):e202300686. PubMed ID: 37012207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into the effects of alloying Pt with Ni on oxygen reduction reaction mechanisms in acid medium: a first-principles study.
    Ou LH
    J Mol Model; 2015 Nov; 21(11):281. PubMed ID: 26450348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodeposition of Ni/Cu Bimetallic Conductive Metal-Organic Frameworks Electrocatalysts with Boosted Oxygen Reduction Activity for Zinc-Air Batteries.
    Liu M; Zhao J; Dong H; Meng H; Cao D; Zhu K; Yao J; Wang G
    Small; 2024 Nov; 20(47):e2405309. PubMed ID: 39148192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Conductive 3D Dual-Metal π-d Conjugated Metal-Organic Framework Fe
    Lin L; Zhang C; Yin L; Sun Y; Xing D; Liu Y; Wang P; Wang Z; Zheng Z; Cheng H; Dai Y; Huang B
    Small; 2024 May; 20(22):e2309256. PubMed ID: 38133479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface.
    Yang Y; Dai C; Fisher A; Shen Y; Cheng D
    J Phys Condens Matter; 2017 Sep; 29(36):365201. PubMed ID: 28677595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni clusters immobilized on oxygen-rich siloxene nanosheets for efficient electrocatalytic oxygen reduction toward H
    Hu H; Ma K; Yang Y; Jin N; Zhang L; Qian J; Han L
    Dalton Trans; 2024 Mar; 53(10):4823-4832. PubMed ID: 38372568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational screening of MN
    Mao X; Tang C; He T; Wijethunge D; Yan C; Zhu Z; Du A
    Nanoscale; 2020 Mar; 12(10):6188-6194. PubMed ID: 32133471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A density functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts.
    Kattel S; Atanassov P; Kiefer B
    Phys Chem Chem Phys; 2014 Jul; 16(27):13800-6. PubMed ID: 24872227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Transfer Induced by the Change of Spin States as a Catalytic Descriptor on C
    Liu P; Liu H; Qiu Y; Jiang J; Zhong W
    J Phys Chem Lett; 2024 Sep; 15(35):9003-9009. PubMed ID: 39186377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidase-Inspired Selective 2e/4e Reduction of Oxygen on Electron-Deficient Cu.
    He F; Zheng Y; Fan H; Ma D; Chen Q; Wei T; Wu W; Wu D; Hu X
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4833-4842. PubMed ID: 31914316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Metal-Organic Frameworks as Ultrahigh-Performance Electrocatalysts for the Fuel Cell Cathode: A First-Principles Study.
    Chen X; Luo L; Ge F
    Langmuir; 2022 Apr; 38(16):4996-5005. PubMed ID: 35420824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production.
    Yuan Y; Li H; Jiang Z; Lin Z; Tang Y; Wang H; Liang Y
    Chem Sci; 2022 Sep; 13(37):11260-11265. PubMed ID: 36320459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined Synthesis of Oriented Two-Dimensional Ni
    Liu XH; Yang YW; Liu XM; Hao Q; Wang LM; Sun B; Wu J; Wang D
    Langmuir; 2020 Jul; 36(26):7528-7532. PubMed ID: 32513012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.