BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29292696)

  • 1. Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm.
    Aguillon R; Batut J; Subramanian A; Madelaine R; Dufourcq P; Schilling TF; Blader P
    Elife; 2018 Jan; 7():. PubMed ID: 29292696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of olfactory placode development and neurogenesis is blocked in mice lacking both Six1 and Six4.
    Chen B; Kim EH; Xu PX
    Dev Biol; 2009 Feb; 326(1):75-85. PubMed ID: 19027001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sox10-dependent neural crest origin of olfactory microvillous neurons in zebrafish.
    Saxena A; Peng BN; Bronner ME
    Elife; 2013 Mar; 2():e00336. PubMed ID: 23539289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenohypophysis placodal precursors exhibit distinctive features within the rostral preplacodal ectoderm.
    Sanchez-Arrones L; Sandonís Á; Cardozo MJ; Bovolenta P
    Development; 2017 Oct; 144(19):3521-3532. PubMed ID: 28974641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential BMP signaling controls formation and differentiation of multipotent preplacodal ectoderm progenitors from human embryonic stem cells.
    Leung AW; Kent Morest D; Li JY
    Dev Biol; 2013 Jul; 379(2):208-20. PubMed ID: 23643939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous Origin of Gonadotropin Releasing Hormone-1 Neurons in Mouse Embryos Detected by Islet-1/2 Expression.
    Shan Y; Saadi H; Wray S
    Front Cell Dev Biol; 2020; 8():35. PubMed ID: 32083082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of zebrafish pitx3 expression in the primordia of the pituitary, lens, olfactory epithelium and cranial ganglia by hedgehog and nodal signaling.
    Zilinski CA; Shah R; Lane ME; Jamrich M
    Genesis; 2005 Jan; 41(1):33-40. PubMed ID: 15645439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competence, specification and commitment to an olfactory placode fate.
    Bhattacharyya S; Bronner-Fraser M
    Development; 2008 Dec; 135(24):4165-77. PubMed ID: 19029046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of cranial sensory placode development.
    Moody SA; LaMantia AS
    Curr Top Dev Biol; 2015; 111():301-50. PubMed ID: 25662264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early embryonic specification of vertebrate cranial placodes.
    Schlosser G
    Wiley Interdiscip Rev Dev Biol; 2014; 3(5):349-63. PubMed ID: 25124756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt, and FGF signaling.
    Watanabe T; Kanai Y; Matsukawa S; Michiue T
    Genesis; 2015 Oct; 53(10):652-9. PubMed ID: 26249012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clonal analyses in the anterior pre-placodal region: implications for the early lineage bias of placodal progenitors.
    Bhattacharyya S; Bronner ME
    Int J Dev Biol; 2013; 57(9-10):753-7. PubMed ID: 24307294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis.
    Maharana SK; Schlosser G
    BMC Biol; 2018 Jul; 16(1):79. PubMed ID: 30012125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Molecular Analysis of Neural Olfactory Placode Differentiation in Human Pluripotent Stem Cells.
    Bricker RL; Bhaskar U; Titone R; Carless MA; Barberi T
    Stem Cells Dev; 2022 Sep; 31(17-18):507-520. PubMed ID: 35592997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new model for olfactory placode development.
    Whitlock KE
    Brain Behav Evol; 2004; 64(3):126-40. PubMed ID: 15353905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons.
    Karpinski BA; Bryan CA; Paronett EM; Baker JL; Fernandez A; Horvath A; Maynard TM; Moody SA; LaMantia AS
    Dev Biol; 2016 Jul; 415(2):228-241. PubMed ID: 26988119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio.
    Whitlock KE; Wolf CD; Boyce ML
    Dev Biol; 2003 May; 257(1):140-52. PubMed ID: 12710963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells.
    Forni PE; Taylor-Burds C; Melvin VS; Williams T; Wray S
    J Neurosci; 2011 May; 31(18):6915-27. PubMed ID: 21543621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction.
    Abraham E; Palevitch O; Gothilf Y; Zohar Y
    Endocrinology; 2010 Jan; 151(1):332-40. PubMed ID: 19861502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Gnrh/Gnih elements in the olfacto-retinal system and ovary during zebrafish ovarian maturation.
    Corchuelo S; Martinez ERM; Butzge AJ; Doretto LB; Ricci JMB; Valentin FN; Nakaghi LSO; Somoza GM; Nóbrega RH
    Mol Cell Endocrinol; 2017 Jul; 450():1-13. PubMed ID: 28400274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.