BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29292721)

  • 1. One-Step Partially Purified Lipases (ScLipA and ScLipB) from Schizophyllum commune UTARA1 Obtained via Solid State Fermentation and Their Applications.
    Kam YC; Woo KK; Ong LGA
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29292721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized lipase from Schizophyllum commune ISTL04 for the production of fatty acids methyl esters from cyanobacterial oil.
    Singh J; Singh MK; Kumar M; Thakur IS
    Bioresour Technol; 2015; 188():214-8. PubMed ID: 25670399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Purification and Characterization of Lipases from Lasiodiplodia theobromae, and Their Immobilization and Use for Biodiesel Production from Coconut Oil.
    Venkatesagowda B; Ponugupaty E; Barbosa-Dekker AM; Dekker RFH
    Appl Biochem Biotechnol; 2018 Jul; 185(3):619-640. PubMed ID: 29250753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area.
    Speranza P; Ribeiro AP; Macedo GA
    J Biotechnol; 2016 Jan; 218():13-20. PubMed ID: 26657709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-State Fermentation as an Economic Production Method of Lipases.
    Ojeda-Hernández DD; Cosío-Cuadros R; Sandoval G; Rodríguez-González JA; Mateos-Díaz JC
    Methods Mol Biol; 2018; 1835():217-228. PubMed ID: 30109655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils.
    Preczeski KP; Kamanski AB; Scapini T; Camargo AF; Modkoski TA; Rossetto V; Venturin B; Mulinari J; Golunski SM; Mossi AJ; Treichel H
    Bioprocess Biosyst Eng; 2018 Jun; 41(6):851-857. PubMed ID: 29516167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational strategy for the production of new crude lipases from Candida rugosa.
    de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV
    Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases.
    Mulinari J; Venturin B; Sbardelotto M; Dall Agnol A; Scapini T; Camargo AF; Baldissarelli DP; Modkovski TA; Rossetto V; Dalla Rosa C; Reichert FW; Golunski SM; Vieitez I; Vargas GDLP; Dalla Rosa C; Mossi AJ; Treichel H
    Ultrason Sonochem; 2017 Mar; 35(Pt A):313-318. PubMed ID: 27746067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration, partial characterization, and immobilization of lipase extract from P. brevicompactum by solid-state fermentation of babassu cake and castor bean cake.
    Silva MF; Freire DM; de Castro AM; Di Luccio M; Mazutti MA; Oliveira JV; Treichel H; de Oliveira D
    Appl Biochem Biotechnol; 2011 Jul; 164(6):755-66. PubMed ID: 21258873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in glyceride composition of olive pomace oil during enzymatic esterification.
    Gögüş F; Fadiloglu S; Ciftçi ON
    Nahrung; 2004 Jun; 48(3):205-8. PubMed ID: 15285112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil.
    Yang W; Cao H; Xu L; Zhang H; Yan Y
    BMC Biotechnol; 2015 Oct; 15():94. PubMed ID: 26463643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High oleic enhancement of palm olein via enzymatic interesterification.
    Lin SW; Huey SM
    J Oleo Sci; 2009; 58(11):549-55. PubMed ID: 19844069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production.
    Silveira EA; Tardioli PW; Farinas CS
    Appl Biochem Biotechnol; 2016 Jun; 179(4):558-71. PubMed ID: 26892007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent-free lipase-catalyzed preparation of diacylglycerols.
    Weber N; Mukherjee KD
    J Agric Food Chem; 2004 Aug; 52(17):5347-53. PubMed ID: 15315368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, candida albicans and Aspergillus flavus.
    Padhiar J; Das A; Bhattacharya S
    Pak J Biol Sci; 2011 Nov; 14(22):1011-8. PubMed ID: 22514878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipase-catalysed production of triacylglycerols enriched in pinolenic acid at the sn-2 position from pine nut oil.
    Choi JH; Kim BH; Hong SI; Kim CT; Kim CJ; Kim Y; Kim IH
    J Sci Food Agric; 2012 Mar; 92(4):870-6. PubMed ID: 21953622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot enzymatic synthesis of docosahexaenoic acid-rich triacylglycerols at the sn-1(3) position using by-product from selective hydrolysis of tuna oil.
    Nagao T; Watanabe Y; Maruyama K; Momokawa Y; Kishimoto N; Shimada Y
    N Biotechnol; 2011 Jan; 28(1):7-13. PubMed ID: 20709631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational search for lipases that can preferentially hydrolyze long-chain omega-3 fatty acids from fish oil triacylglycerols.
    Kamal MZ; Barrow CJ; Rao NM
    Food Chem; 2015 Apr; 173():1030-6. PubMed ID: 25466121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel extremely acidic lipases produced from Bacillus species using oil substrates.
    Saranya P; Kumari HS; Jothieswari M; Rao BP; Sekaran G
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):9-15. PubMed ID: 24185617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification?
    Sun J; Yu B; Curran P; Liu SQ
    Food Chem; 2013 Dec; 141(3):2828-32. PubMed ID: 23871030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.