These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 29292829)

  • 21. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource.
    Vance CP; Uhde-Stone C; Allan DL
    New Phytol; 2003 Mar; 157(3):423-447. PubMed ID: 33873400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glomus fasciculatum Fungi as a Bio-convertor and Bio-activator of Inorganic and Organic P in Dual Symbiosis.
    Azmat R; Hamid N; Moin S; Saleem A
    Recent Pat Biotechnol; 2016; 9(2):130-8. PubMed ID: 26718115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth Depression in Mycorrhizal Citrus at High-Phosphorus Supply (Analysis of Carbon Costs).
    Peng S; Eissenstat DM; Graham JH; Williams K; Hodge NC
    Plant Physiol; 1993 Mar; 101(3):1063-1071. PubMed ID: 12231758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorus nutrition of mycorrhizal trees.
    Plassard C; Dell B
    Tree Physiol; 2010 Sep; 30(9):1129-39. PubMed ID: 20631011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutrient acquisition, soil phosphorus partitioning and competition among trees in a lowland tropical rain forest.
    Nasto MK; Osborne BB; Lekberg Y; Asner GP; Balzotti CS; Porder S; Taylor PG; Townsend AR; Cleveland CC
    New Phytol; 2017 Jun; 214(4):1506-1517. PubMed ID: 28262951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mycorrhizal benefit differs among the sexes in a gynodioecious species.
    Varga S; Kytöviita MM
    Ecology; 2010 Sep; 91(9):2583-93. PubMed ID: 20957953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Local adaptation to mycorrhizal fungi in geographically close Lobelia siphilitica populations.
    Rekret P; Maherali H
    Oecologia; 2019 May; 190(1):127-138. PubMed ID: 31102015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits.
    Lambers H; Shane MW; Cramer MD; Pearse SJ; Veneklaas EJ
    Ann Bot; 2006 Oct; 98(4):693-713. PubMed ID: 16769731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Modulation of Arbuscular Mycorrhizal Symbiosis and Soil Quality by Fungal P Solubilizers.
    Della Mónica IF; Godeas AM; Scervino JM
    Microb Ecol; 2020 Jan; 79(1):21-29. PubMed ID: 31218384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment I. Differential growth response, P-efficiency characteristics and P-remobilization.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1008-23. PubMed ID: 19903223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plants as resource islands and storage units--adopting the mycocentric view of arbuscular mycorrhizal networks.
    Lekberg Y; Hammer EC; Olsson PA
    FEMS Microbiol Ecol; 2010 Nov; 74(2):336-45. PubMed ID: 20722732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration.
    Wasaki J; Rothe A; Kania A; Neumann G; Römheld V; Shinano T; Osaki M; Kandeler E
    J Environ Qual; 2005; 34(6):2157-66. PubMed ID: 16275716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae.
    Pepe A; Giovannetti M; Sbrana C
    Mycorrhiza; 2020 Sep; 30(5):589-600. PubMed ID: 32533256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary history resolves global organization of root functional traits.
    Ma Z; Guo D; Xu X; Lu M; Bardgett RD; Eissenstat DM; McCormack ML; Hedin LO
    Nature; 2018 Mar; 555(7694):94-97. PubMed ID: 29466331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pinus pinaster seedlings and their fungal symbionts show high plasticity in phosphorus acquisition in acidic soils.
    Ali MA; Louche J; Legname E; Duchemin M; Plassard C
    Tree Physiol; 2009 Dec; 29(12):1587-97. PubMed ID: 19840995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales.
    Smith SE; Smith FA
    Annu Rev Plant Biol; 2011; 62():227-50. PubMed ID: 21391813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection.
    Wright DP; Scholes JD; Read DJ; Rolfe SA
    New Phytol; 2005 Sep; 167(3):881-96. PubMed ID: 16101924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maize varieties can strengthen positive plant-soil feedback through beneficial arbuscular mycorrhizal fungal mutualists.
    Wang XX; Hoffland E; Mommer L; Feng G; Kuyper TW
    Mycorrhiza; 2019 May; 29(3):251-261. PubMed ID: 30919070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.