These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29293427)

  • 1. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle.
    Ahmad IL; Ahmad MR; Takeuchi M; Nakajima M; Hasegawa Y
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1413-1421. PubMed ID: 29293427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.
    Chiu YY; Huang CK; Lu YW
    Biomicrofluidics; 2016 Jan; 10(1):011906. PubMed ID: 26858812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.
    Al-Zareer M
    Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of colloidal filtration of polystyrene micro-particles on glass substrate using a microfluidic device.
    Sun J; Tandogan N; Gu AZ; Müftü S; Goluch ED; Wan KT
    Colloids Surf B Biointerfaces; 2018 May; 165():381-387. PubMed ID: 29529580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cell-based microfluidic multichannel setup-impact of hydrodynamics and surface characteristics on the bioadhesion of polystyrene microspheres.
    Wang XY; Pichl C; Gabor F; Wirth M
    Colloids Surf B Biointerfaces; 2013 Feb; 102():849-56. PubMed ID: 23107963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.
    Kumar V; Rezai P
    Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous-flow size-based separation of microparticles by microchip electromagnetophoresis.
    Fukui Y; Iiguni Y; Kitagawa S; Ohtani H
    Anal Sci; 2015; 31(3):197-203. PubMed ID: 25765274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High throughput multilayer microfluidic particle separation platform using embedded thermoplastic-based micropumping.
    Didar TF; Li K; Tabrizian M; Veres T
    Lab Chip; 2013 Jul; 13(13):2615-22. PubMed ID: 23640083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed-field separation of particles in a microfluidic device.
    Regtmeier J; Eichhorn R; Duong TT; Reimann P; Anselmetti D; Ros A
    Eur Phys J E Soft Matter; 2007 Apr; 22(4):335-40. PubMed ID: 17492395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.
    Yeo JC; Wang Z; Lim CT
    Biomicrofluidics; 2015 Sep; 9(5):054114. PubMed ID: 26487900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces.
    Wu Y; Chattaraj R; Ren Y; Jiang H; Lee D
    Anal Chem; 2021 Jun; 93(21):7635-7646. PubMed ID: 34014074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics.
    Tirapu-Azpiroz J; Temiz Y; Delamarche E
    Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.