BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29293431)

  • 1. Automated Registration of 3-D Knee Implant Models to Fluoroscopic Images Using Lipschitzian Optimization.
    Flood PDL; Banks SA
    IEEE Trans Med Imaging; 2018 Jan; 37(1):326-335. PubMed ID: 29293431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Registration of Three-Dimensional Knee Implant Models to Fluoroscopic Images using Lipschitzian Optimization.
    Flood PD; Banks SA
    IEEE Trans Med Imaging; 2018 Jan; 37(1):326-335. PubMed ID: 27093545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images.
    Mahfouz MR; Hoff WA; Komistek RD; Dennis DA
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1561-74. PubMed ID: 14649746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy.
    Tsai TY; Lu TW; Chen CM; Kuo MY; Hsu HC
    Med Phys; 2010 Mar; 37(3):1273-84. PubMed ID: 20384265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical accuracy of model-based shape matching for measuring natural knee kinematics with single-plane fluoroscopy.
    Fregly BJ; Rahman HA; Banks SA
    J Biomech Eng; 2005 Aug; 127(4):692-9. PubMed ID: 16121540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy.
    Yamazaki T; Watanabe T; Nakajima Y; Sugamoto K; Tomita T; Yoshikawa H; Tamura S
    IEEE Trans Med Imaging; 2004 May; 23(5):602-12. PubMed ID: 15147013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.
    Mahfouz MR; Hoff WA; Komistek RD; Dennis DA
    J Biomech; 2005 Feb; 38(2):229-39. PubMed ID: 15598449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images.
    Zhu Z; Li G
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1245-56. PubMed ID: 21806411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-assisted non-invasive and dynamic biomechanical analysis of human joints.
    Muhit AA; Pickering MR; Scarvell JM; Ward T; Smith PN
    Phys Med Biol; 2013 Jul; 58(13):4679-702. PubMed ID: 23774692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New registration algorithm for determining 3D knee kinematics using CT and single-plane fluoroscopy with improved out-of-plane translation accuracy.
    Scarvell JM; Pickering MR; Smith PN
    J Orthop Res; 2010 Mar; 28(3):334-40. PubMed ID: 19798739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new multi-modal similarity measure for fast gradient-based 2D-3D image registration.
    Pickering MR; Muhit AA; Scarvell JM; Smith PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5821-4. PubMed ID: 19965251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The quality of bone surfaces may govern the use of model based fluoroscopy in the determination of joint laxity.
    Moewis P; Wolterbeek N; Diederichs G; Valstar E; Heller MO; Taylor WR
    Med Eng Phys; 2012 Dec; 34(10):1427-32. PubMed ID: 22342557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics.
    Dennis DA; Mahfouz MR; Komistek RD; Hoff W
    J Biomech; 2005 Feb; 38(2):241-53. PubMed ID: 15598450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total knee arthroplasty three-dimensional kinematic estimation prevision. From a two-dimensional fluoroscopy acquired dynamic model.
    Lebel BP; Pineau V; Gouzy SL; Geais L; Parienti JJ; Dutheil JJ; Vielpeau CH
    Orthop Traumatol Surg Res; 2011 Apr; 97(2):111-20. PubMed ID: 21439928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimized image matching method for determining in-vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system.
    Bingham J; Li G
    J Biomech Eng; 2006 Aug; 128(4):588-95. PubMed ID: 16813450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "In vivo" pose estimation of artificial knee implants using computer vision.
    Walker SA; Hoff W; Komistek R; Dennis D
    Biomed Sci Instrum; 1996; 32():143-50. PubMed ID: 8672662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of single-plane fluoroscopy in determining relative position and orientation of total knee replacement components.
    Acker S; Li R; Murray H; John PS; Banks S; Mu S; Wyss U; Deluzio K
    J Biomech; 2011 Feb; 44(4):784-7. PubMed ID: 21092967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics.
    Li G; Wuerz TH; DeFrate LE
    J Biomech Eng; 2004 Apr; 126(2):314-8. PubMed ID: 15179865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the tibiofemoral joint space using x-ray tomosynthesis.
    Kalinosky B; Sabol JM; Piacsek K; Heckel B; Gilat Schmidt T
    Med Phys; 2011 Dec; 38(12):6672-82. PubMed ID: 22149849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D CT to 2D low dose single-plane fluoroscopy registration algorithm for in-vivo knee motion analysis.
    Akter M; Lambert AJ; Pickering MR; Scarvell JM; Smith PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5121-4. PubMed ID: 25571145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.