These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29293534)

  • 1. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.
    Li S; Ren Y; Fu Y; Gao X; Jiang C; Wu G; Ren H; Geng J
    PLoS One; 2018; 13(1):e0189867. PubMed ID: 29293534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levels, consumption, and variations of eight artificial sweeteners in the wastewater treatment plants of Dalian city, China.
    Yue Y; Li L; Qu B; Liu Y; Wang X; Wang H; Chen S
    Sci Total Environ; 2023 Sep; 892():163867. PubMed ID: 37201820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence and removal of four artificial sweeteners in wastewater treatment plants of China.
    Shen G; Lei S; Li H; Yu Q; Wu G; Shi Y; Xu K; Ren H; Geng J
    Environ Sci Process Impacts; 2023 Jan; 25(1):75-84. PubMed ID: 36476784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption and biodegradation of artificial sweeteners in activated sludge processes.
    Tran NH; Gan J; Nguyen VT; Chen H; You L; Duarah A; Zhang L; Gin KY
    Bioresour Technol; 2015 Dec; 197():329-38. PubMed ID: 26342347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and modeling of artificial sweeteners degradation in wastewater by the UV/persulfate process.
    Fu Y; Wu G; Geng J; Li J; Li S; Ren H
    Water Res; 2019 Mar; 150():12-20. PubMed ID: 30503870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nitrification in the biodegradation of selected artificial sweetening agents in biological wastewater treatment process.
    Tran NH; Nguyen VT; Urase T; Ngo HH
    Bioresour Technol; 2014 Jun; 161():40-6. PubMed ID: 24681682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mass loading of typical artificial sweeteners in a pig farm and their dissipation and uptake by plants in neighboring farmland.
    Ma L; Liu Y; Xu J; Sun H; Chen H; Yao Y; Zhang P; Shen F; Alder AC
    Sci Total Environ; 2017 Dec; 605-606():735-744. PubMed ID: 28675883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acesulfame and other artificial sweeteners in a wastewater treatment plant in Alberta, Canada: Occurrence, degradation, and emission.
    Qiao S; Huang W; Kuzma D; Kormendi A
    Chemosphere; 2024 May; 356():141893. PubMed ID: 38582168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of artificial sweeteners using UV/persulfate: Radical-based degradation kinetic model in wastewater, pathways and toxicity.
    Fu Y; Li S; Shi Y; Geng J; Li J; Wu G; Xu K; Ren H
    Water Res; 2019 Dec; 167():115102. PubMed ID: 31574346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking the fate of artificial sweeteners within the coastal waters of Shenzhen city, China: From wastewater treatment plants to sea.
    Guo W; Li J; Liu Q; Shi J; Gao Y
    J Hazard Mater; 2021 Jul; 414():125498. PubMed ID: 33667807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A.
    Subedi B; Kannan K
    Environ Sci Technol; 2014 Dec; 48(23):13668-74. PubMed ID: 25365516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sucralose and acesulfame as an indicator of domestic wastewater contamination in Wuhan surface water.
    Fu K; Wang L; Wei C; Li J; Zhang J; Zhou Z; Liang Y
    Ecotoxicol Environ Saf; 2020 Feb; 189():109980. PubMed ID: 31785946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of low-calorie sweeteners at five Brazilian wastewater treatment plants and their occurrence in surface water.
    Alves PDCC; Rodrigues-Silva C; Ribeiro AR; Rath S
    J Environ Manage; 2021 Jul; 289():112561. PubMed ID: 33865021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial sweeteners--a recently recognized class of emerging environmental contaminants: a review.
    Lange FT; Scheurer M; Brauch HJ
    Anal Bioanal Chem; 2012 Jul; 403(9):2503-18. PubMed ID: 22543693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence, distribution, and ecological risk assessment of artificial sweeteners in surface and ground waters of the middle and lower reaches of the Yellow River (Henan section, China).
    Yu X; Yu F; Li Z; Shi T; Xia Z; Li G
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52609-52623. PubMed ID: 36840868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of conventional multi-barrier drinking water treatment plants for the removal of four artificial sweeteners.
    Scheurer M; Storck FR; Brauch HJ; Lange FT
    Water Res; 2010 Jun; 44(12):3573-84. PubMed ID: 20462625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities.
    Sang Z; Jiang Y; Tsoi YK; Leung KS
    Water Res; 2014 Apr; 52():260-74. PubMed ID: 24289948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal occurrence, removal and mass loads of artificial sweeteners in the largest water reclamation plant in China.
    Yue J; Guo W; Li D; Zhu Y; Zhao Q; Wang A; Li J
    Sci Total Environ; 2023 Jan; 856(Pt 1):159133. PubMed ID: 36181830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and trends of artificial sweeteners in coastal waters in the bay of Cadiz (NE Atlantic).
    Baena-Nogueras RM; Traverso-Soto JM; Biel-Maeso M; Villar-Navarro E; Lara-Martín PA
    Mar Pollut Bull; 2018 Oct; 135():607-616. PubMed ID: 30301079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicity and environmental fates of newly recognized contaminants-artificial sweeteners: A review.
    Luo J; Zhang Q; Cao M; Wu L; Cao J; Fang F; Li C; Xue Z; Feng Q
    Sci Total Environ; 2019 Feb; 653():1149-1160. PubMed ID: 30759555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.