These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 29293706)

  • 1. Genetic structured antedependence and random regression models applied to the longitudinal feed conversion ratio in growing Large White pigs.
    Huynh-Tran VH; Gilbert H; David I
    J Anim Sci; 2017 Nov; 95(11):4752-4763. PubMed ID: 29293706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How to improve breeding value prediction for feed conversion ratio in the case of incomplete longitudinal body weights.
    Tran VH; Gilbert H; David I
    J Anim Sci; 2017 Jan; 95(1):39-48. PubMed ID: 28177346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple-trait structured antedependence model to study the relationship between litter size and birth weight in pigs and rabbits.
    David I; Garreau H; Balmisse E; Billon Y; Canario L
    Genet Sel Evol; 2017 Jan; 49(1):11. PubMed ID: 28107818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple trait model combining random regressions for daily feed intake with single measured performance traits of growing pigs.
    Schnyder U; Hofer A; Labroue F; Künzi N
    Genet Sel Evol; 2002; 34(1):61-81. PubMed ID: 11929625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic modeling of feed intake.
    David I; Ruesche J; Drouilhet L; Garreau H; Gilbert H
    J Anim Sci; 2015 Mar; 93(3):965-77. PubMed ID: 26020875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of structured antedependence models for the genetic analysis of growth curves.
    Jaffrézic F; Venot E; Laloë D; Vinet A; Renand G
    J Anim Sci; 2004 Dec; 82(12):3465-73. PubMed ID: 15537765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint analysis of longitudinal feed intake and single recorded production traits in pigs using a novel Horizontal model.
    Shirali M; Strathe AB; Mark T; Nielsen B; Jensen J
    J Anim Sci; 2017 Mar; 95(3):1050-1062. PubMed ID: 28380533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of longitudinal measurements of performance traits in selection lines for residual feed intake in Yorkshire swine.
    Cai W; Kaiser MS; Dekkers JC
    J Anim Sci; 2011 May; 89(5):1270-80. PubMed ID: 21521810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic parameters of a random regression model for daily feed intake of performance tested French Landrace and Large White growing pigs.
    Schnyder U; Hofer A; Labroue F; Künzi N
    Genet Sel Evol; 2001; 33(6):635-58. PubMed ID: 11742633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian estimation of direct and correlated responses to selection on linear or ratio expressions of feed efficiency in pigs.
    Shirali M; Varley PF; Jensen J
    Genet Sel Evol; 2018 Jun; 50(1):33. PubMed ID: 29925306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New residual feed intake criterion for longitudinal data.
    David I; Huynh Tran VH; Gilbert H
    Genet Sel Evol; 2021 Jun; 53(1):53. PubMed ID: 34171995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic parameters for various random regression models to describe the weight data of pigs.
    Huisman AE; Veerkamp RF; van Arendonk JA
    J Anim Sci; 2002 Mar; 80(3):575-82. PubMed ID: 11892676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic and genetic relationships between growth and feed intake curves and feed efficiency and amino acid requirements in the growing pig.
    Saintilan R; Brossard L; Vautier B; Sellier P; Bidanel J; van Milgen J; Gilbert H
    Animal; 2015 Jan; 9(1):18-27. PubMed ID: 25192352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality of breeding value predictions from longitudinal analyses, with application to residual feed intake in pigs.
    David I; Ricard A; Huynh-Tran VH; Dekkers JCM; Gilbert H
    Genet Sel Evol; 2022 May; 54(1):32. PubMed ID: 35562648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic co-variance functions for live weight, feed intake, and efficiency measures in growing pigs.
    Coyne JM; Berry DP; Matilainen K; Sevon-Aimonen ML; Mantysaari EA; Juga J; Serenius T; McHugh N
    J Anim Sci; 2017 Sep; 95(9):3822-3832. PubMed ID: 28992029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Longitudinal analysis of direct and indirect effects on average daily gain in rabbits using a structured antedependence model.
    David I; Sánchez JP; Piles M
    Genet Sel Evol; 2018 May; 50(1):25. PubMed ID: 29747574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic evaluation and selection response for growth in meat-type quail through random regression models using B-spline functions and Legendre polynomials.
    Mota LFM; Martins PGMA; Littiere TO; Abreu LRA; Silva MA; Bonafé CM
    Animal; 2018 Apr; 12(4):667-674. PubMed ID: 28803586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analyses of partial egg production in Japanese quail using multi-trait random regression models.
    Karami K; Zerehdaran S; Barzanooni B; Lotfi E
    Br Poult Sci; 2017 Dec; 58(6):624-628. PubMed ID: 28901781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Random regression models to estimate genetic parameters for test-day milk yield in Brazilian Murrah buffaloes.
    Sesana RC; Bignardi AB; Borquis RR; El Faro L; Baldi F; Albuquerque LG; Tonhati H
    J Anim Breed Genet; 2010 Oct; 127(5):369-76. PubMed ID: 20831561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of the rates of conception using a longitudinal threshold model with random regression in dairy crossbreeding within a tropical environment.
    Buaban S; Kuchida K; Suzuki M; Masuda Y; Boonkum W; Duangjinda M
    Anim Sci J; 2016 Aug; 87(8):961-71. PubMed ID: 26556694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.